123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- /* ----------------------------------------------------------------------
- * Project: CMSIS DSP Library
- * Title: arm_sin_f32.c
- * Description: Fast sine calculation for floating-point values
- *
- * $Date: 27. January 2017
- * $Revision: V.1.5.1
- *
- * Target Processor: Cortex-M cores
- * -------------------------------------------------------------------- */
- /*
- * Copyright (C) 2010-2017 ARM Limited or its affiliates. All rights reserved.
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the License); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an AS IS BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- #include "arm_math.h"
- #include "arm_common_tables.h"
- #include <math.h>
- /**
- * @ingroup groupFastMath
- */
- /**
- * @defgroup sin Sine
- *
- * Computes the trigonometric sine function using a combination of table lookup
- * and linear interpolation. There are separate functions for
- * Q15, Q31, and floating-point data types.
- * The input to the floating-point version is in radians and in the range [0 2*pi) while the
- * fixed-point Q15 and Q31 have a scaled input with the range
- * [0 +0.9999] mapping to [0 2*pi). The fixed-point range is chosen so that a
- * value of 2*pi wraps around to 0.
- *
- * The implementation is based on table lookup using 256 values together with linear interpolation.
- * The steps used are:
- * -# Calculation of the nearest integer table index
- * -# Compute the fractional portion (fract) of the table index.
- * -# The final result equals <code>(1.0f-fract)*a + fract*b;</code>
- *
- * where
- * <pre>
- * b=Table[index+0];
- * c=Table[index+1];
- * </pre>
- */
- /**
- * @addtogroup sin
- * @{
- */
- /**
- * @brief Fast approximation to the trigonometric sine function for floating-point data.
- * @param[in] x input value in radians.
- * @return sin(x).
- */
- float32_t arm_sin_f32(
- float32_t x)
- {
- float32_t sinVal, fract, in; /* Temporary variables for input, output */
- uint16_t index; /* Index variable */
- float32_t a, b; /* Two nearest output values */
- int32_t n;
- float32_t findex;
- /* Special case for small negative inputs */
- if ((x < 0.0f) && (x >= -1.9e-7f)) {
- return x;
- }
- /* input x is in radians */
- /* Scale the input to [0 1] range from [0 2*PI] , divide input by 2*pi */
- in = x * 0.159154943092f;
- /* Calculation of floor value of input */
- n = (int32_t) in;
- /* Make negative values towards -infinity */
- if (x < 0.0f)
- {
- n--;
- }
- /* Map input value to [0 1] */
- in = in - (float32_t) n;
- /* Calculation of index of the table */
- findex = (float32_t) FAST_MATH_TABLE_SIZE * in;
- index = ((uint16_t)findex) & 0x1ff;
- /* fractional value calculation */
- fract = findex - (float32_t) index;
- /* Read two nearest values of input value from the sin table */
- a = sinTable_f32[index];
- b = sinTable_f32[index+1];
- /* Linear interpolation process */
- sinVal = (1.0f-fract)*a + fract*b;
- /* Return the output value */
- return (sinVal);
- }
- /**
- * @} end of sin group
- */
|