12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052 |
- /* ----------------------------------------------------------------------
- * Copyright (C) 2010 ARM Limited. All rights reserved.
- *
- * $Date: 15. July 2011
- * $Revision: V1.0.10
- *
- * Project: CMSIS DSP Library
- * Title: arm_math.h
- *
- * Description: Public header file for CMSIS DSP Library
- *
- * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0
- *
- * Version 1.0.10 2011/7/15
- * Big Endian support added and Merged M0 and M3/M4 Source code.
- *
- * Version 1.0.3 2010/11/29
- * Re-organized the CMSIS folders and updated documentation.
- *
- * Version 1.0.2 2010/11/11
- * Documentation updated.
- *
- * Version 1.0.1 2010/10/05
- * Production release and review comments incorporated.
- *
- * Version 1.0.0 2010/09/20
- * Production release and review comments incorporated.
- * -------------------------------------------------------------------- */
- /**
- \mainpage CMSIS DSP Software Library
- *
- * <b>Introduction</b>
- *
- * This user manual describes the CMSIS DSP software library,
- * a suite of common signal processing functions for use on Cortex-M processor based devices.
- *
- * The library is divided into a number of modules each covering a specific category:
- * - Basic math functions
- * - Fast math functions
- * - Complex math functions
- * - Filters
- * - Matrix functions
- * - Transforms
- * - Motor control functions
- * - Statistical functions
- * - Support functions
- * - Interpolation functions
- *
- * The library has separate functions for operating on 8-bit integers, 16-bit integers,
- * 32-bit integer and 32-bit floating-point values.
- *
- * <b>Processor Support</b>
- *
- * The library is completely written in C and is fully CMSIS compliant.
- * High performance is achieved through maximum use of Cortex-M4 intrinsics.
- *
- * The supplied library source code also builds and runs on the Cortex-M3 and Cortex-M0 processor,
- * with the DSP intrinsics being emulated through software.
- *
- *
- * <b>Toolchain Support</b>
- *
- * The library has been developed and tested with MDK-ARM version 4.21.
- * The library is being tested in GCC and IAR toolchains and updates on this activity will be made available shortly.
- *
- * <b>Using the Library</b>
- *
- * The library installer contains prebuilt versions of the libraries in the <code>Lib</code> folder.
- * - arm_cortexM4lf_math.lib (Little endian and Floating Point Unit on Cortex-M4)
- * - arm_cortexM4bf_math.lib (Big endian and Floating Point Unit on Cortex-M4)
- * - arm_cortexM4l_math.lib (Little endian on Cortex-M4)
- * - arm_cortexM4b_math.lib (Big endian on Cortex-M4)
- * - arm_cortexM3l_math.lib (Little endian on Cortex-M3)
- * - arm_cortexM3b_math.lib (Big endian on Cortex-M3)
- * - arm_cortexM0l_math.lib (Little endian on Cortex-M0)
- * - arm_cortexM0b_math.lib (Big endian on Cortex-M3)
- *
- * The library functions are declared in the public file <code>arm_math.h</code> which is placed in the <code>Include</code> folder.
- * Simply include this file and link the appropriate library in the application and begin calling the library functions. The Library supports single
- * public header file <code> arm_math.h</code> for Cortex-M4/M3/M0 with little endian and big endian. Same header file will be used for floating point unit(FPU) variants.
- * Define the appropriate pre processor MACRO ARM_MATH_CM4 or ARM_MATH_CM3 or
- * ARM_MATH_CM0 depending on the target processor in the application.
- *
- * <b>Examples</b>
- *
- * The library ships with a number of examples which demonstrate how to use the library functions.
- *
- * <b>Building the Library</b>
- *
- * The library installer contains project files to re build libraries on MDK Tool chain in the <code>CMSIS\DSP_Lib\Source\ARM</code> folder.
- * - arm_cortexM0b_math.uvproj
- * - arm_cortexM0l_math.uvproj
- * - arm_cortexM3b_math.uvproj
- * - arm_cortexM3l_math.uvproj
- * - arm_cortexM4b_math.uvproj
- * - arm_cortexM4l_math.uvproj
- * - arm_cortexM4bf_math.uvproj
- * - arm_cortexM4lf_math.uvproj
- *
- * Each library project have differant pre-processor macros.
- *
- * <b>ARM_MATH_CMx:</b>
- * Define macro ARM_MATH_CM4 for building the library on Cortex-M4 target, ARM_MATH_CM3 for building library on Cortex-M3 target
- * and ARM_MATH_CM0 for building library on cortex-M0 target.
- *
- * <b>ARM_MATH_BIG_ENDIAN:</b>
- * Define macro ARM_MATH_BIG_ENDIAN to build the library for big endian targets. By default library builds for little endian targets.
- *
- * <b>ARM_MATH_MATRIX_CHECK:</b>
- * Define macro for checking on the input and output sizes of matrices
- *
- * <b>ARM_MATH_ROUNDING:</b>
- * Define macro for rounding on support functions
- *
- * <b>__FPU_PRESENT:</b>
- * Initialize macro __FPU_PRESENT = 1 when building on FPU supported Targets. Enable this macro for M4bf and M4lf libraries
- *
- *
- * The project can be built by opening the appropriate project in MDK-ARM 4.21 chain and defining the optional pre processor MACROs detailed above.
- *
- * <b>Copyright Notice</b>
- *
- * Copyright (C) 2010 ARM Limited. All rights reserved.
- */
- /**
- * @defgroup groupMath Basic Math Functions
- */
- /**
- * @defgroup groupFastMath Fast Math Functions
- * This set of functions provides a fast approximation to sine, cosine, and square root.
- * As compared to most of the other functions in the CMSIS math library, the fast math functions
- * operate on individual values and not arrays.
- * There are separate functions for Q15, Q31, and floating-point data.
- *
- */
- /**
- * @defgroup groupCmplxMath Complex Math Functions
- * This set of functions operates on complex data vectors.
- * The data in the complex arrays is stored in an interleaved fashion
- * (real, imag, real, imag, ...).
- * In the API functions, the number of samples in a complex array refers
- * to the number of complex values; the array contains twice this number of
- * real values.
- */
- /**
- * @defgroup groupFilters Filtering Functions
- */
- /**
- * @defgroup groupMatrix Matrix Functions
- *
- * This set of functions provides basic matrix math operations.
- * The functions operate on matrix data structures. For example,
- * the type
- * definition for the floating-point matrix structure is shown
- * below:
- * <pre>
- * typedef struct
- * {
- * uint16_t numRows; // number of rows of the matrix.
- * uint16_t numCols; // number of columns of the matrix.
- * float32_t *pData; // points to the data of the matrix.
- * } arm_matrix_instance_f32;
- * </pre>
- * There are similar definitions for Q15 and Q31 data types.
- *
- * The structure specifies the size of the matrix and then points to
- * an array of data. The array is of size <code>numRows X numCols</code>
- * and the values are arranged in row order. That is, the
- * matrix element (i, j) is stored at:
- * <pre>
- * pData[i*numCols + j]
- * </pre>
- *
- * \par Init Functions
- * There is an associated initialization function for each type of matrix
- * data structure.
- * The initialization function sets the values of the internal structure fields.
- * Refer to the function <code>arm_mat_init_f32()</code>, <code>arm_mat_init_q31()</code>
- * and <code>arm_mat_init_q15()</code> for floating-point, Q31 and Q15 types, respectively.
- *
- * \par
- * Use of the initialization function is optional. However, if initialization function is used
- * then the instance structure cannot be placed into a const data section.
- * To place the instance structure in a const data
- * section, manually initialize the data structure. For example:
- * <pre>
- * <code>arm_matrix_instance_f32 S = {nRows, nColumns, pData};</code>
- * <code>arm_matrix_instance_q31 S = {nRows, nColumns, pData};</code>
- * <code>arm_matrix_instance_q15 S = {nRows, nColumns, pData};</code>
- * </pre>
- * where <code>nRows</code> specifies the number of rows, <code>nColumns</code>
- * specifies the number of columns, and <code>pData</code> points to the
- * data array.
- *
- * \par Size Checking
- * By default all of the matrix functions perform size checking on the input and
- * output matrices. For example, the matrix addition function verifies that the
- * two input matrices and the output matrix all have the same number of rows and
- * columns. If the size check fails the functions return:
- * <pre>
- * ARM_MATH_SIZE_MISMATCH
- * </pre>
- * Otherwise the functions return
- * <pre>
- * ARM_MATH_SUCCESS
- * </pre>
- * There is some overhead associated with this matrix size checking.
- * The matrix size checking is enabled via the #define
- * <pre>
- * ARM_MATH_MATRIX_CHECK
- * </pre>
- * within the library project settings. By default this macro is defined
- * and size checking is enabled. By changing the project settings and
- * undefining this macro size checking is eliminated and the functions
- * run a bit faster. With size checking disabled the functions always
- * return <code>ARM_MATH_SUCCESS</code>.
- */
- /**
- * @defgroup groupTransforms Transform Functions
- */
- /**
- * @defgroup groupController Controller Functions
- */
- /**
- * @defgroup groupStats Statistics Functions
- */
- /**
- * @defgroup groupSupport Support Functions
- */
- /**
- * @defgroup groupInterpolation Interpolation Functions
- * These functions perform 1- and 2-dimensional interpolation of data.
- * Linear interpolation is used for 1-dimensional data and
- * bilinear interpolation is used for 2-dimensional data.
- */
- /**
- * @defgroup groupExamples Examples
- */
- #ifndef _ARM_MATH_H
- #define _ARM_MATH_H
- #define __CMSIS_GENERIC /* disable NVIC and Systick functions */
- #if defined (ARM_MATH_CM4)
- #include "core_cm4.h"
- #elif defined (ARM_MATH_CM3)
- #include "core_cm3.h"
- #elif defined (ARM_MATH_CM0)
- #include "core_cm0.h"
- #else
- #include "ARMCM4.h"
- #warning "Define either ARM_MATH_CM4 OR ARM_MATH_CM3...By Default building on ARM_MATH_CM4....."
- #endif
- #undef __CMSIS_GENERIC /* enable NVIC and Systick functions */
- #include "string.h"
- #include "math.h"
- #ifdef __cplusplus
- extern "C"
- {
- #endif
- /**
- * @brief Macros required for reciprocal calculation in Normalized LMS
- */
- #define DELTA_Q31 (0x100)
- #define DELTA_Q15 0x5
- #define INDEX_MASK 0x0000003F
- #define PI 3.14159265358979f
- /**
- * @brief Macros required for SINE and COSINE Fast math approximations
- */
- #define TABLE_SIZE 256
- #define TABLE_SPACING_Q31 0x800000
- #define TABLE_SPACING_Q15 0x80
- /**
- * @brief Macros required for SINE and COSINE Controller functions
- */
- /* 1.31(q31) Fixed value of 2/360 */
- /* -1 to +1 is divided into 360 values so total spacing is (2/360) */
- #define INPUT_SPACING 0xB60B61
- /**
- * @brief Error status returned by some functions in the library.
- */
- typedef enum
- {
- ARM_MATH_SUCCESS = 0, /**< No error */
- ARM_MATH_ARGUMENT_ERROR = -1, /**< One or more arguments are incorrect */
- ARM_MATH_LENGTH_ERROR = -2, /**< Length of data buffer is incorrect */
- ARM_MATH_SIZE_MISMATCH = -3, /**< Size of matrices is not compatible with the operation. */
- ARM_MATH_NANINF = -4, /**< Not-a-number (NaN) or infinity is generated */
- ARM_MATH_SINGULAR = -5, /**< Generated by matrix inversion if the input matrix is singular and cannot be inverted. */
- ARM_MATH_TEST_FAILURE = -6 /**< Test Failed */
- } arm_status;
- /**
- * @brief 8-bit fractional data type in 1.7 format.
- */
- typedef int8_t q7_t;
- /**
- * @brief 16-bit fractional data type in 1.15 format.
- */
- typedef int16_t q15_t;
- /**
- * @brief 32-bit fractional data type in 1.31 format.
- */
- typedef int32_t q31_t;
- /**
- * @brief 64-bit fractional data type in 1.63 format.
- */
- typedef int64_t q63_t;
- /**
- * @brief 32-bit floating-point type definition.
- */
- typedef float float32_t;
- /**
- * @brief 64-bit floating-point type definition.
- */
- typedef double float64_t;
- /**
- * @brief definition to read/write two 16 bit values.
- */
- #define __SIMD32(addr) (*(int32_t **) & (addr))
- #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0)
- /**
- * @brief definition to pack two 16 bit values.
- */
- #define __PKHBT(ARG1, ARG2, ARG3) ( (((int32_t)(ARG1) << 0) & (int32_t)0x0000FFFF) | \
- (((int32_t)(ARG2) << ARG3) & (int32_t)0xFFFF0000) )
- #endif
- /**
- * @brief definition to pack four 8 bit values.
- */
- #ifndef ARM_MATH_BIG_ENDIAN
- #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v0) << 0) & (int32_t)0x000000FF) | \
- (((int32_t)(v1) << 8) & (int32_t)0x0000FF00) | \
- (((int32_t)(v2) << 16) & (int32_t)0x00FF0000) | \
- (((int32_t)(v3) << 24) & (int32_t)0xFF000000) )
- #else
- #define __PACKq7(v0,v1,v2,v3) ( (((int32_t)(v3) << 0) & (int32_t)0x000000FF) | \
- (((int32_t)(v2) << 8) & (int32_t)0x0000FF00) | \
- (((int32_t)(v1) << 16) & (int32_t)0x00FF0000) | \
- (((int32_t)(v0) << 24) & (int32_t)0xFF000000) )
-
- #endif
- /**
- * @brief Clips Q63 to Q31 values.
- */
- static __INLINE q31_t clip_q63_to_q31(
- q63_t x)
- {
- return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
- ((0x7FFFFFFF ^ ((q31_t) (x >> 63)))) : (q31_t) x;
- }
- /**
- * @brief Clips Q63 to Q15 values.
- */
- static __INLINE q15_t clip_q63_to_q15(
- q63_t x)
- {
- return ((q31_t) (x >> 32) != ((q31_t) x >> 31)) ?
- ((0x7FFF ^ ((q15_t) (x >> 63)))) : (q15_t) (x >> 15);
- }
- /**
- * @brief Clips Q31 to Q7 values.
- */
- static __INLINE q7_t clip_q31_to_q7(
- q31_t x)
- {
- return ((q31_t) (x >> 24) != ((q31_t) x >> 23)) ?
- ((0x7F ^ ((q7_t) (x >> 31)))) : (q7_t) x;
- }
- /**
- * @brief Clips Q31 to Q15 values.
- */
- static __INLINE q15_t clip_q31_to_q15(
- q31_t x)
- {
- return ((q31_t) (x >> 16) != ((q31_t) x >> 15)) ?
- ((0x7FFF ^ ((q15_t) (x >> 31)))) : (q15_t) x;
- }
- /**
- * @brief Multiplies 32 X 64 and returns 32 bit result in 2.30 format.
- */
- static __INLINE q63_t mult32x64(
- q63_t x,
- q31_t y)
- {
- return ((((q63_t) (x & 0x00000000FFFFFFFF) * y) >> 32) +
- (((q63_t) (x >> 32) * y)));
- }
- #if defined (ARM_MATH_CM0) && defined ( __CC_ARM )
- #define __CLZ __clz
- #endif
- #if defined (ARM_MATH_CM0) && ((defined (__ICCARM__)) ||(defined (__GNUC__)) || defined (__TASKING__) )
- static __INLINE uint32_t __CLZ(q31_t data);
- static __INLINE uint32_t __CLZ(q31_t data)
- {
- uint32_t count = 0;
- uint32_t mask = 0x80000000;
- while((data & mask) == 0)
- {
- count += 1u;
- mask = mask >> 1u;
- }
- return(count);
- }
- #endif
- /**
- * @brief Function to Calculates 1/in(reciprocal) value of Q31 Data type.
- */
- static __INLINE uint32_t arm_recip_q31(
- q31_t in,
- q31_t * dst,
- q31_t * pRecipTable)
- {
- uint32_t out, tempVal;
- uint32_t index, i;
- uint32_t signBits;
- if(in > 0)
- {
- signBits = __CLZ(in) - 1;
- }
- else
- {
- signBits = __CLZ(-in) - 1;
- }
- /* Convert input sample to 1.31 format */
- in = in << signBits;
- /* calculation of index for initial approximated Val */
- index = (uint32_t) (in >> 24u);
- index = (index & INDEX_MASK);
- /* 1.31 with exp 1 */
- out = pRecipTable[index];
- /* calculation of reciprocal value */
- /* running approximation for two iterations */
- for (i = 0u; i < 2u; i++)
- {
- tempVal = (q31_t) (((q63_t) in * out) >> 31u);
- tempVal = 0x7FFFFFFF - tempVal;
- /* 1.31 with exp 1 */
- //out = (q31_t) (((q63_t) out * tempVal) >> 30u);
- out = (q31_t) clip_q63_to_q31(((q63_t) out * tempVal) >> 30u);
- }
- /* write output */
- *dst = out;
- /* return num of signbits of out = 1/in value */
- return (signBits + 1u);
- }
- /**
- * @brief Function to Calculates 1/in(reciprocal) value of Q15 Data type.
- */
- static __INLINE uint32_t arm_recip_q15(
- q15_t in,
- q15_t * dst,
- q15_t * pRecipTable)
- {
- uint32_t out = 0, tempVal = 0;
- uint32_t index = 0, i = 0;
- uint32_t signBits = 0;
- if(in > 0)
- {
- signBits = __CLZ(in) - 17;
- }
- else
- {
- signBits = __CLZ(-in) - 17;
- }
- /* Convert input sample to 1.15 format */
- in = in << signBits;
- /* calculation of index for initial approximated Val */
- index = in >> 8;
- index = (index & INDEX_MASK);
- /* 1.15 with exp 1 */
- out = pRecipTable[index];
- /* calculation of reciprocal value */
- /* running approximation for two iterations */
- for (i = 0; i < 2; i++)
- {
- tempVal = (q15_t) (((q31_t) in * out) >> 15);
- tempVal = 0x7FFF - tempVal;
- /* 1.15 with exp 1 */
- out = (q15_t) (((q31_t) out * tempVal) >> 14);
- }
- /* write output */
- *dst = out;
- /* return num of signbits of out = 1/in value */
- return (signBits + 1);
- }
- /*
- * @brief C custom defined intrinisic function for only M0 processors
- */
- #if defined(ARM_MATH_CM0)
- static __INLINE q31_t __SSAT(
- q31_t x,
- uint32_t y)
- {
- int32_t posMax, negMin;
- uint32_t i;
- posMax = 1;
- for (i = 0; i < (y - 1); i++)
- {
- posMax = posMax * 2;
- }
- if(x > 0)
- {
- posMax = (posMax - 1);
- if(x > posMax)
- {
- x = posMax;
- }
- }
- else
- {
- negMin = -posMax;
- if(x < negMin)
- {
- x = negMin;
- }
- }
- return (x);
- }
- #endif /* end of ARM_MATH_CM0 */
- /*
- * @brief C custom defined intrinsic function for M3 and M0 processors
- */
- #if defined (ARM_MATH_CM3) || defined (ARM_MATH_CM0)
- /*
- * @brief C custom defined QADD8 for M3 and M0 processors
- */
- static __INLINE q31_t __QADD8(
- q31_t x,
- q31_t y)
- {
- q31_t sum;
- q7_t r, s, t, u;
- r = (char) x;
- s = (char) y;
- r = __SSAT((q31_t) (r + s), 8);
- s = __SSAT(((q31_t) (((x << 16) >> 24) + ((y << 16) >> 24))), 8);
- t = __SSAT(((q31_t) (((x << 8) >> 24) + ((y << 8) >> 24))), 8);
- u = __SSAT(((q31_t) ((x >> 24) + (y >> 24))), 8);
- sum = (((q31_t) u << 24) & 0xFF000000) | (((q31_t) t << 16) & 0x00FF0000) |
- (((q31_t) s << 8) & 0x0000FF00) | (r & 0x000000FF);
- return sum;
- }
- /*
- * @brief C custom defined QSUB8 for M3 and M0 processors
- */
- static __INLINE q31_t __QSUB8(
- q31_t x,
- q31_t y)
- {
- q31_t sum;
- q31_t r, s, t, u;
- r = (char) x;
- s = (char) y;
- r = __SSAT((r - s), 8);
- s = __SSAT(((q31_t) (((x << 16) >> 24) - ((y << 16) >> 24))), 8) << 8;
- t = __SSAT(((q31_t) (((x << 8) >> 24) - ((y << 8) >> 24))), 8) << 16;
- u = __SSAT(((q31_t) ((x >> 24) - (y >> 24))), 8) << 24;
- sum =
- (u & 0xFF000000) | (t & 0x00FF0000) | (s & 0x0000FF00) | (r & 0x000000FF);
- return sum;
- }
- /*
- * @brief C custom defined QADD16 for M3 and M0 processors
- */
- /*
- * @brief C custom defined QADD16 for M3 and M0 processors
- */
- static __INLINE q31_t __QADD16(
- q31_t x,
- q31_t y)
- {
- q31_t sum;
- q31_t r, s;
- r = (short) x;
- s = (short) y;
- r = __SSAT(r + s, 16);
- s = __SSAT(((q31_t) ((x >> 16) + (y >> 16))), 16) << 16;
- sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
- return sum;
- }
- /*
- * @brief C custom defined SHADD16 for M3 and M0 processors
- */
- static __INLINE q31_t __SHADD16(
- q31_t x,
- q31_t y)
- {
- q31_t sum;
- q31_t r, s;
- r = (short) x;
- s = (short) y;
- r = ((r >> 1) + (s >> 1));
- s = ((q31_t) ((x >> 17) + (y >> 17))) << 16;
- sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
- return sum;
- }
- /*
- * @brief C custom defined QSUB16 for M3 and M0 processors
- */
- static __INLINE q31_t __QSUB16(
- q31_t x,
- q31_t y)
- {
- q31_t sum;
- q31_t r, s;
- r = (short) x;
- s = (short) y;
- r = __SSAT(r - s, 16);
- s = __SSAT(((q31_t) ((x >> 16) - (y >> 16))), 16) << 16;
- sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
- return sum;
- }
- /*
- * @brief C custom defined SHSUB16 for M3 and M0 processors
- */
- static __INLINE q31_t __SHSUB16(
- q31_t x,
- q31_t y)
- {
- q31_t diff;
- q31_t r, s;
- r = (short) x;
- s = (short) y;
- r = ((r >> 1) - (s >> 1));
- s = (((x >> 17) - (y >> 17)) << 16);
- diff = (s & 0xFFFF0000) | (r & 0x0000FFFF);
- return diff;
- }
- /*
- * @brief C custom defined QASX for M3 and M0 processors
- */
- static __INLINE q31_t __QASX(
- q31_t x,
- q31_t y)
- {
- q31_t sum = 0;
- sum = ((sum + clip_q31_to_q15((q31_t) ((short) (x >> 16) + (short) y))) << 16) +
- clip_q31_to_q15((q31_t) ((short) x - (short) (y >> 16)));
- return sum;
- }
- /*
- * @brief C custom defined SHASX for M3 and M0 processors
- */
- static __INLINE q31_t __SHASX(
- q31_t x,
- q31_t y)
- {
- q31_t sum;
- q31_t r, s;
- r = (short) x;
- s = (short) y;
- r = ((r >> 1) - (y >> 17));
- s = (((x >> 17) + (s >> 1)) << 16);
- sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
- return sum;
- }
- /*
- * @brief C custom defined QSAX for M3 and M0 processors
- */
- static __INLINE q31_t __QSAX(
- q31_t x,
- q31_t y)
- {
- q31_t sum = 0;
- sum = ((sum + clip_q31_to_q15((q31_t) ((short) (x >> 16) - (short) y))) << 16) +
- clip_q31_to_q15((q31_t) ((short) x + (short) (y >> 16)));
- return sum;
- }
- /*
- * @brief C custom defined SHSAX for M3 and M0 processors
- */
- static __INLINE q31_t __SHSAX(
- q31_t x,
- q31_t y)
- {
- q31_t sum;
- q31_t r, s;
- r = (short) x;
- s = (short) y;
- r = ((r >> 1) + (y >> 17));
- s = (((x >> 17) - (s >> 1)) << 16);
- sum = (s & 0xFFFF0000) | (r & 0x0000FFFF);
- return sum;
- }
- /*
- * @brief C custom defined SMUSDX for M3 and M0 processors
- */
- static __INLINE q31_t __SMUSDX(
- q31_t x,
- q31_t y)
- {
- return ((q31_t)(((short) x * (short) (y >> 16)) -
- ((short) (x >> 16) * (short) y)));
- }
- /*
- * @brief C custom defined SMUADX for M3 and M0 processors
- */
- static __INLINE q31_t __SMUADX(
- q31_t x,
- q31_t y)
- {
- return ((q31_t)(((short) x * (short) (y >> 16)) +
- ((short) (x >> 16) * (short) y)));
- }
- /*
- * @brief C custom defined QADD for M3 and M0 processors
- */
- static __INLINE q31_t __QADD(
- q31_t x,
- q31_t y)
- {
- return clip_q63_to_q31((q63_t) x + y);
- }
- /*
- * @brief C custom defined QSUB for M3 and M0 processors
- */
- static __INLINE q31_t __QSUB(
- q31_t x,
- q31_t y)
- {
- return clip_q63_to_q31((q63_t) x - y);
- }
- /*
- * @brief C custom defined SMLAD for M3 and M0 processors
- */
- static __INLINE q31_t __SMLAD(
- q31_t x,
- q31_t y,
- q31_t sum)
- {
- return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
- ((short) x * (short) y));
- }
- /*
- * @brief C custom defined SMLADX for M3 and M0 processors
- */
- static __INLINE q31_t __SMLADX(
- q31_t x,
- q31_t y,
- q31_t sum)
- {
- return (sum + ((short) (x >> 16) * (short) (y)) +
- ((short) x * (short) (y >> 16)));
- }
- /*
- * @brief C custom defined SMLSDX for M3 and M0 processors
- */
- static __INLINE q31_t __SMLSDX(
- q31_t x,
- q31_t y,
- q31_t sum)
- {
- return (sum - ((short) (x >> 16) * (short) (y)) +
- ((short) x * (short) (y >> 16)));
- }
- /*
- * @brief C custom defined SMLALD for M3 and M0 processors
- */
- static __INLINE q63_t __SMLALD(
- q31_t x,
- q31_t y,
- q63_t sum)
- {
- return (sum + ((short) (x >> 16) * (short) (y >> 16)) +
- ((short) x * (short) y));
- }
- /*
- * @brief C custom defined SMLALDX for M3 and M0 processors
- */
- static __INLINE q63_t __SMLALDX(
- q31_t x,
- q31_t y,
- q63_t sum)
- {
- return (sum + ((short) (x >> 16) * (short) y)) +
- ((short) x * (short) (y >> 16));
- }
- /*
- * @brief C custom defined SMUAD for M3 and M0 processors
- */
- static __INLINE q31_t __SMUAD(
- q31_t x,
- q31_t y)
- {
- return (((x >> 16) * (y >> 16)) +
- (((x << 16) >> 16) * ((y << 16) >> 16)));
- }
- /*
- * @brief C custom defined SMUSD for M3 and M0 processors
- */
- static __INLINE q31_t __SMUSD(
- q31_t x,
- q31_t y)
- {
- return (-((x >> 16) * (y >> 16)) +
- (((x << 16) >> 16) * ((y << 16) >> 16)));
- }
- #endif /* (ARM_MATH_CM3) || defined (ARM_MATH_CM0) */
- /**
- * @brief Instance structure for the Q7 FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of filter coefficients in the filter. */
- q7_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- } arm_fir_instance_q7;
- /**
- * @brief Instance structure for the Q15 FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of filter coefficients in the filter. */
- q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- } arm_fir_instance_q15;
- /**
- * @brief Instance structure for the Q31 FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of filter coefficients in the filter. */
- q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- } arm_fir_instance_q31;
- /**
- * @brief Instance structure for the floating-point FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of filter coefficients in the filter. */
- float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- } arm_fir_instance_f32;
- /**
- * @brief Processing function for the Q7 FIR filter.
- * @param[in] *S points to an instance of the Q7 FIR filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_fir_q7(
- const arm_fir_instance_q7 * S,
- q7_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q7 FIR filter.
- * @param[in,out] *S points to an instance of the Q7 FIR structure.
- * @param[in] numTaps Number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed.
- * @return none
- */
- void arm_fir_init_q7(
- arm_fir_instance_q7 * S,
- uint16_t numTaps,
- q7_t * pCoeffs,
- q7_t * pState,
- uint32_t blockSize);
- /**
- * @brief Processing function for the Q15 FIR filter.
- * @param[in] *S points to an instance of the Q15 FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_fir_q15(
- const arm_fir_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Processing function for the fast Q15 FIR filter for Cortex-M3 and Cortex-M4.
- * @param[in] *S points to an instance of the Q15 FIR filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_fir_fast_q15(
- const arm_fir_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q15 FIR filter.
- * @param[in,out] *S points to an instance of the Q15 FIR filter structure.
- * @param[in] numTaps Number of filter coefficients in the filter. Must be even and greater than or equal to 4.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed at a time.
- * @return The function returns ARM_MATH_SUCCESS if initialization was successful or ARM_MATH_ARGUMENT_ERROR if
- * <code>numTaps</code> is not a supported value.
- */
-
- arm_status arm_fir_init_q15(
- arm_fir_instance_q15 * S,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- uint32_t blockSize);
- /**
- * @brief Processing function for the Q31 FIR filter.
- * @param[in] *S points to an instance of the Q31 FIR filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_fir_q31(
- const arm_fir_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Processing function for the fast Q31 FIR filter for Cortex-M3 and Cortex-M4.
- * @param[in] *S points to an instance of the Q31 FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_fir_fast_q31(
- const arm_fir_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q31 FIR filter.
- * @param[in,out] *S points to an instance of the Q31 FIR structure.
- * @param[in] numTaps Number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed at a time.
- * @return none.
- */
- void arm_fir_init_q31(
- arm_fir_instance_q31 * S,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- uint32_t blockSize);
- /**
- * @brief Processing function for the floating-point FIR filter.
- * @param[in] *S points to an instance of the floating-point FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_fir_f32(
- const arm_fir_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the floating-point FIR filter.
- * @param[in,out] *S points to an instance of the floating-point FIR filter structure.
- * @param[in] numTaps Number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of samples that are processed at a time.
- * @return none.
- */
- void arm_fir_init_f32(
- arm_fir_instance_f32 * S,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the Q15 Biquad cascade filter.
- */
- typedef struct
- {
- int8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- q15_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
- q15_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
- int8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
- } arm_biquad_casd_df1_inst_q15;
- /**
- * @brief Instance structure for the Q31 Biquad cascade filter.
- */
- typedef struct
- {
- uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- q31_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
- q31_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
- uint8_t postShift; /**< Additional shift, in bits, applied to each output sample. */
- } arm_biquad_casd_df1_inst_q31;
- /**
- * @brief Instance structure for the floating-point Biquad cascade filter.
- */
- typedef struct
- {
- uint32_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- float32_t *pState; /**< Points to the array of state coefficients. The array is of length 4*numStages. */
- float32_t *pCoeffs; /**< Points to the array of coefficients. The array is of length 5*numStages. */
- } arm_biquad_casd_df1_inst_f32;
- /**
- * @brief Processing function for the Q15 Biquad cascade filter.
- * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_biquad_cascade_df1_q15(
- const arm_biquad_casd_df1_inst_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q15 Biquad cascade filter.
- * @param[in,out] *S points to an instance of the Q15 Biquad cascade structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
- * @return none
- */
- void arm_biquad_cascade_df1_init_q15(
- arm_biquad_casd_df1_inst_q15 * S,
- uint8_t numStages,
- q15_t * pCoeffs,
- q15_t * pState,
- int8_t postShift);
- /**
- * @brief Fast but less precise processing function for the Q15 Biquad cascade filter for Cortex-M3 and Cortex-M4.
- * @param[in] *S points to an instance of the Q15 Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_biquad_cascade_df1_fast_q15(
- const arm_biquad_casd_df1_inst_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Processing function for the Q31 Biquad cascade filter
- * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_biquad_cascade_df1_q31(
- const arm_biquad_casd_df1_inst_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Fast but less precise processing function for the Q31 Biquad cascade filter for Cortex-M3 and Cortex-M4.
- * @param[in] *S points to an instance of the Q31 Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_biquad_cascade_df1_fast_q31(
- const arm_biquad_casd_df1_inst_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q31 Biquad cascade filter.
- * @param[in,out] *S points to an instance of the Q31 Biquad cascade structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] postShift Shift to be applied to the output. Varies according to the coefficients format
- * @return none
- */
- void arm_biquad_cascade_df1_init_q31(
- arm_biquad_casd_df1_inst_q31 * S,
- uint8_t numStages,
- q31_t * pCoeffs,
- q31_t * pState,
- int8_t postShift);
- /**
- * @brief Processing function for the floating-point Biquad cascade filter.
- * @param[in] *S points to an instance of the floating-point Biquad cascade structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_biquad_cascade_df1_f32(
- const arm_biquad_casd_df1_inst_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the floating-point Biquad cascade filter.
- * @param[in,out] *S points to an instance of the floating-point Biquad cascade structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @return none
- */
- void arm_biquad_cascade_df1_init_f32(
- arm_biquad_casd_df1_inst_f32 * S,
- uint8_t numStages,
- float32_t * pCoeffs,
- float32_t * pState);
- /**
- * @brief Instance structure for the floating-point matrix structure.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows of the matrix. */
- uint16_t numCols; /**< number of columns of the matrix. */
- float32_t *pData; /**< points to the data of the matrix. */
- } arm_matrix_instance_f32;
- /**
- * @brief Instance structure for the Q15 matrix structure.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows of the matrix. */
- uint16_t numCols; /**< number of columns of the matrix. */
- q15_t *pData; /**< points to the data of the matrix. */
- } arm_matrix_instance_q15;
- /**
- * @brief Instance structure for the Q31 matrix structure.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows of the matrix. */
- uint16_t numCols; /**< number of columns of the matrix. */
- q31_t *pData; /**< points to the data of the matrix. */
- } arm_matrix_instance_q31;
- /**
- * @brief Floating-point matrix addition.
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_add_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst);
- /**
- * @brief Q15 matrix addition.
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_add_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst);
- /**
- * @brief Q31 matrix addition.
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_add_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst);
- /**
- * @brief Floating-point matrix transpose.
- * @param[in] *pSrc points to the input matrix
- * @param[out] *pDst points to the output matrix
- * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
- * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_trans_f32(
- const arm_matrix_instance_f32 * pSrc,
- arm_matrix_instance_f32 * pDst);
- /**
- * @brief Q15 matrix transpose.
- * @param[in] *pSrc points to the input matrix
- * @param[out] *pDst points to the output matrix
- * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
- * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_trans_q15(
- const arm_matrix_instance_q15 * pSrc,
- arm_matrix_instance_q15 * pDst);
- /**
- * @brief Q31 matrix transpose.
- * @param[in] *pSrc points to the input matrix
- * @param[out] *pDst points to the output matrix
- * @return The function returns either <code>ARM_MATH_SIZE_MISMATCH</code>
- * or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_trans_q31(
- const arm_matrix_instance_q31 * pSrc,
- arm_matrix_instance_q31 * pDst);
- /**
- * @brief Floating-point matrix multiplication
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_mult_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst);
- /**
- * @brief Q15 matrix multiplication
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_mult_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst,
- q15_t * pState);
- /**
- * @brief Q15 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @param[in] *pState points to the array for storing intermediate results
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_mult_fast_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst,
- q15_t * pState);
- /**
- * @brief Q31 matrix multiplication
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_mult_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst);
- /**
- * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_mult_fast_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst);
- /**
- * @brief Floating-point matrix subtraction
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_sub_f32(
- const arm_matrix_instance_f32 * pSrcA,
- const arm_matrix_instance_f32 * pSrcB,
- arm_matrix_instance_f32 * pDst);
- /**
- * @brief Q15 matrix subtraction
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_sub_q15(
- const arm_matrix_instance_q15 * pSrcA,
- const arm_matrix_instance_q15 * pSrcB,
- arm_matrix_instance_q15 * pDst);
- /**
- * @brief Q31 matrix subtraction
- * @param[in] *pSrcA points to the first input matrix structure
- * @param[in] *pSrcB points to the second input matrix structure
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_sub_q31(
- const arm_matrix_instance_q31 * pSrcA,
- const arm_matrix_instance_q31 * pSrcB,
- arm_matrix_instance_q31 * pDst);
- /**
- * @brief Floating-point matrix scaling.
- * @param[in] *pSrc points to the input matrix
- * @param[in] scale scale factor
- * @param[out] *pDst points to the output matrix
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_scale_f32(
- const arm_matrix_instance_f32 * pSrc,
- float32_t scale,
- arm_matrix_instance_f32 * pDst);
- /**
- * @brief Q15 matrix scaling.
- * @param[in] *pSrc points to input matrix
- * @param[in] scaleFract fractional portion of the scale factor
- * @param[in] shift number of bits to shift the result by
- * @param[out] *pDst points to output matrix
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_scale_q15(
- const arm_matrix_instance_q15 * pSrc,
- q15_t scaleFract,
- int32_t shift,
- arm_matrix_instance_q15 * pDst);
- /**
- * @brief Q31 matrix scaling.
- * @param[in] *pSrc points to input matrix
- * @param[in] scaleFract fractional portion of the scale factor
- * @param[in] shift number of bits to shift the result by
- * @param[out] *pDst points to output matrix structure
- * @return The function returns either
- * <code>ARM_MATH_SIZE_MISMATCH</code> or <code>ARM_MATH_SUCCESS</code> based on the outcome of size checking.
- */
- arm_status arm_mat_scale_q31(
- const arm_matrix_instance_q31 * pSrc,
- q31_t scaleFract,
- int32_t shift,
- arm_matrix_instance_q31 * pDst);
- /**
- * @brief Q31 matrix initialization.
- * @param[in,out] *S points to an instance of the floating-point matrix structure.
- * @param[in] nRows number of rows in the matrix.
- * @param[in] nColumns number of columns in the matrix.
- * @param[in] *pData points to the matrix data array.
- * @return none
- */
- void arm_mat_init_q31(
- arm_matrix_instance_q31 * S,
- uint16_t nRows,
- uint16_t nColumns,
- q31_t *pData);
- /**
- * @brief Q15 matrix initialization.
- * @param[in,out] *S points to an instance of the floating-point matrix structure.
- * @param[in] nRows number of rows in the matrix.
- * @param[in] nColumns number of columns in the matrix.
- * @param[in] *pData points to the matrix data array.
- * @return none
- */
- void arm_mat_init_q15(
- arm_matrix_instance_q15 * S,
- uint16_t nRows,
- uint16_t nColumns,
- q15_t *pData);
- /**
- * @brief Floating-point matrix initialization.
- * @param[in,out] *S points to an instance of the floating-point matrix structure.
- * @param[in] nRows number of rows in the matrix.
- * @param[in] nColumns number of columns in the matrix.
- * @param[in] *pData points to the matrix data array.
- * @return none
- */
- void arm_mat_init_f32(
- arm_matrix_instance_f32 * S,
- uint16_t nRows,
- uint16_t nColumns,
- float32_t *pData);
- /**
- * @brief Instance structure for the Q15 PID Control.
- */
- typedef struct
- {
- q15_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
- #ifdef ARM_MATH_CM0
- q15_t A1;
- q15_t A2;
- #else
- q31_t A1; /**< The derived gain A1 = -Kp - 2Kd | Kd.*/
- #endif
- q15_t state[3]; /**< The state array of length 3. */
- q15_t Kp; /**< The proportional gain. */
- q15_t Ki; /**< The integral gain. */
- q15_t Kd; /**< The derivative gain. */
- } arm_pid_instance_q15;
- /**
- * @brief Instance structure for the Q31 PID Control.
- */
- typedef struct
- {
- q31_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
- q31_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
- q31_t A2; /**< The derived gain, A2 = Kd . */
- q31_t state[3]; /**< The state array of length 3. */
- q31_t Kp; /**< The proportional gain. */
- q31_t Ki; /**< The integral gain. */
- q31_t Kd; /**< The derivative gain. */
- } arm_pid_instance_q31;
- /**
- * @brief Instance structure for the floating-point PID Control.
- */
- typedef struct
- {
- float32_t A0; /**< The derived gain, A0 = Kp + Ki + Kd . */
- float32_t A1; /**< The derived gain, A1 = -Kp - 2Kd. */
- float32_t A2; /**< The derived gain, A2 = Kd . */
- float32_t state[3]; /**< The state array of length 3. */
- float32_t Kp; /**< The proportional gain. */
- float32_t Ki; /**< The integral gain. */
- float32_t Kd; /**< The derivative gain. */
- } arm_pid_instance_f32;
- /**
- * @brief Initialization function for the floating-point PID Control.
- * @param[in,out] *S points to an instance of the PID structure.
- * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
- * @return none.
- */
- void arm_pid_init_f32(
- arm_pid_instance_f32 * S,
- int32_t resetStateFlag);
- /**
- * @brief Reset function for the floating-point PID Control.
- * @param[in,out] *S is an instance of the floating-point PID Control structure
- * @return none
- */
- void arm_pid_reset_f32(
- arm_pid_instance_f32 * S);
- /**
- * @brief Initialization function for the Q31 PID Control.
- * @param[in,out] *S points to an instance of the Q15 PID structure.
- * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
- * @return none.
- */
- void arm_pid_init_q31(
- arm_pid_instance_q31 * S,
- int32_t resetStateFlag);
-
- /**
- * @brief Reset function for the Q31 PID Control.
- * @param[in,out] *S points to an instance of the Q31 PID Control structure
- * @return none
- */
- void arm_pid_reset_q31(
- arm_pid_instance_q31 * S);
- /**
- * @brief Initialization function for the Q15 PID Control.
- * @param[in,out] *S points to an instance of the Q15 PID structure.
- * @param[in] resetStateFlag flag to reset the state. 0 = no change in state 1 = reset the state.
- * @return none.
- */
- void arm_pid_init_q15(
- arm_pid_instance_q15 * S,
- int32_t resetStateFlag);
- /**
- * @brief Reset function for the Q15 PID Control.
- * @param[in,out] *S points to an instance of the q15 PID Control structure
- * @return none
- */
- void arm_pid_reset_q15(
- arm_pid_instance_q15 * S);
- /**
- * @brief Instance structure for the floating-point Linear Interpolate function.
- */
- typedef struct
- {
- uint32_t nValues;
- float32_t x1;
- float32_t xSpacing;
- float32_t *pYData; /**< pointer to the table of Y values */
- } arm_linear_interp_instance_f32;
- /**
- * @brief Instance structure for the floating-point bilinear interpolation function.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows in the data table. */
- uint16_t numCols; /**< number of columns in the data table. */
- float32_t *pData; /**< points to the data table. */
- } arm_bilinear_interp_instance_f32;
- /**
- * @brief Instance structure for the Q31 bilinear interpolation function.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows in the data table. */
- uint16_t numCols; /**< number of columns in the data table. */
- q31_t *pData; /**< points to the data table. */
- } arm_bilinear_interp_instance_q31;
- /**
- * @brief Instance structure for the Q15 bilinear interpolation function.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows in the data table. */
- uint16_t numCols; /**< number of columns in the data table. */
- q15_t *pData; /**< points to the data table. */
- } arm_bilinear_interp_instance_q15;
- /**
- * @brief Instance structure for the Q15 bilinear interpolation function.
- */
- typedef struct
- {
- uint16_t numRows; /**< number of rows in the data table. */
- uint16_t numCols; /**< number of columns in the data table. */
- q7_t *pData; /**< points to the data table. */
- } arm_bilinear_interp_instance_q7;
- /**
- * @brief Q7 vector multiplication.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_mult_q7(
- q7_t * pSrcA,
- q7_t * pSrcB,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Q15 vector multiplication.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_mult_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Q31 vector multiplication.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_mult_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Floating-point vector multiplication.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_mult_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the Q15 CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- q15_t *pTwiddle; /**< points to the twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- } arm_cfft_radix4_instance_q15;
- /**
- * @brief Instance structure for the Q31 CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- q31_t *pTwiddle; /**< points to the twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- } arm_cfft_radix4_instance_q31;
- /**
- * @brief Instance structure for the floating-point CFFT/CIFFT function.
- */
- typedef struct
- {
- uint16_t fftLen; /**< length of the FFT. */
- uint8_t ifftFlag; /**< flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform. */
- uint8_t bitReverseFlag; /**< flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output. */
- float32_t *pTwiddle; /**< points to the twiddle factor table. */
- uint16_t *pBitRevTable; /**< points to the bit reversal table. */
- uint16_t twidCoefModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- uint16_t bitRevFactor; /**< bit reversal modifier that supports different size FFTs with the same bit reversal table. */
- float32_t onebyfftLen; /**< value of 1/fftLen. */
- } arm_cfft_radix4_instance_f32;
- /**
- * @brief Processing function for the Q15 CFFT/CIFFT.
- * @param[in] *S points to an instance of the Q15 CFFT/CIFFT structure.
- * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
- * @return none.
- */
- void arm_cfft_radix4_q15(
- const arm_cfft_radix4_instance_q15 * S,
- q15_t * pSrc);
- /**
- * @brief Initialization function for the Q15 CFFT/CIFFT.
- * @param[in,out] *S points to an instance of the Q15 CFFT/CIFFT structure.
- * @param[in] fftLen length of the FFT.
- * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
- * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
- * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value.
- */
- arm_status arm_cfft_radix4_init_q15(
- arm_cfft_radix4_instance_q15 * S,
- uint16_t fftLen,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
- /**
- * @brief Processing function for the Q31 CFFT/CIFFT.
- * @param[in] *S points to an instance of the Q31 CFFT/CIFFT structure.
- * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
- * @return none.
- */
- void arm_cfft_radix4_q31(
- const arm_cfft_radix4_instance_q31 * S,
- q31_t * pSrc);
- /**
- * @brief Initialization function for the Q31 CFFT/CIFFT.
- * @param[in,out] *S points to an instance of the Q31 CFFT/CIFFT structure.
- * @param[in] fftLen length of the FFT.
- * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
- * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
- * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value.
- */
-
- arm_status arm_cfft_radix4_init_q31(
- arm_cfft_radix4_instance_q31 * S,
- uint16_t fftLen,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
- /**
- * @brief Processing function for the floating-point CFFT/CIFFT.
- * @param[in] *S points to an instance of the floating-point CFFT/CIFFT structure.
- * @param[in, out] *pSrc points to the complex data buffer. Processing occurs in-place.
- * @return none.
- */
- void arm_cfft_radix4_f32(
- const arm_cfft_radix4_instance_f32 * S,
- float32_t * pSrc);
- /**
- * @brief Initialization function for the floating-point CFFT/CIFFT.
- * @param[in,out] *S points to an instance of the floating-point CFFT/CIFFT structure.
- * @param[in] fftLen length of the FFT.
- * @param[in] ifftFlag flag that selects forward (ifftFlag=0) or inverse (ifftFlag=1) transform.
- * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLen</code> is not a supported value.
- */
-
- arm_status arm_cfft_radix4_init_f32(
- arm_cfft_radix4_instance_f32 * S,
- uint16_t fftLen,
- uint8_t ifftFlag,
- uint8_t bitReverseFlag);
- /*----------------------------------------------------------------------
- * Internal functions prototypes FFT function
- ----------------------------------------------------------------------*/
- /**
- * @brief Core function for the floating-point CFFT butterfly process.
- * @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
- * @param[in] fftLen length of the FFT.
- * @param[in] *pCoef points to the twiddle coefficient buffer.
- * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
- * @return none.
- */
-
- void arm_radix4_butterfly_f32(
- float32_t * pSrc,
- uint16_t fftLen,
- float32_t * pCoef,
- uint16_t twidCoefModifier);
- /**
- * @brief Core function for the floating-point CIFFT butterfly process.
- * @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
- * @param[in] fftLen length of the FFT.
- * @param[in] *pCoef points to twiddle coefficient buffer.
- * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
- * @param[in] onebyfftLen value of 1/fftLen.
- * @return none.
- */
-
- void arm_radix4_butterfly_inverse_f32(
- float32_t * pSrc,
- uint16_t fftLen,
- float32_t * pCoef,
- uint16_t twidCoefModifier,
- float32_t onebyfftLen);
- /**
- * @brief In-place bit reversal function.
- * @param[in, out] *pSrc points to the in-place buffer of floating-point data type.
- * @param[in] fftSize length of the FFT.
- * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table.
- * @param[in] *pBitRevTab points to the bit reversal table.
- * @return none.
- */
- void arm_bitreversal_f32(
- float32_t *pSrc,
- uint16_t fftSize,
- uint16_t bitRevFactor,
- uint16_t *pBitRevTab);
- /**
- * @brief Core function for the Q31 CFFT butterfly process.
- * @param[in, out] *pSrc points to the in-place buffer of Q31 data type.
- * @param[in] fftLen length of the FFT.
- * @param[in] *pCoef points to twiddle coefficient buffer.
- * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
- * @return none.
- */
-
- void arm_radix4_butterfly_q31(
- q31_t *pSrc,
- uint32_t fftLen,
- q31_t *pCoef,
- uint32_t twidCoefModifier);
- /**
- * @brief Core function for the Q31 CIFFT butterfly process.
- * @param[in, out] *pSrc points to the in-place buffer of Q31 data type.
- * @param[in] fftLen length of the FFT.
- * @param[in] *pCoef points to twiddle coefficient buffer.
- * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
- * @return none.
- */
-
- void arm_radix4_butterfly_inverse_q31(
- q31_t * pSrc,
- uint32_t fftLen,
- q31_t * pCoef,
- uint32_t twidCoefModifier);
-
- /**
- * @brief In-place bit reversal function.
- * @param[in, out] *pSrc points to the in-place buffer of Q31 data type.
- * @param[in] fftLen length of the FFT.
- * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table
- * @param[in] *pBitRevTab points to bit reversal table.
- * @return none.
- */
- void arm_bitreversal_q31(
- q31_t * pSrc,
- uint32_t fftLen,
- uint16_t bitRevFactor,
- uint16_t *pBitRevTab);
- /**
- * @brief Core function for the Q15 CFFT butterfly process.
- * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type.
- * @param[in] fftLen length of the FFT.
- * @param[in] *pCoef16 points to twiddle coefficient buffer.
- * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
- * @return none.
- */
- void arm_radix4_butterfly_q15(
- q15_t *pSrc16,
- uint32_t fftLen,
- q15_t *pCoef16,
- uint32_t twidCoefModifier);
- /**
- * @brief Core function for the Q15 CIFFT butterfly process.
- * @param[in, out] *pSrc16 points to the in-place buffer of Q15 data type.
- * @param[in] fftLen length of the FFT.
- * @param[in] *pCoef16 points to twiddle coefficient buffer.
- * @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
- * @return none.
- */
- void arm_radix4_butterfly_inverse_q15(
- q15_t *pSrc16,
- uint32_t fftLen,
- q15_t *pCoef16,
- uint32_t twidCoefModifier);
- /**
- * @brief In-place bit reversal function.
- * @param[in, out] *pSrc points to the in-place buffer of Q15 data type.
- * @param[in] fftLen length of the FFT.
- * @param[in] bitRevFactor bit reversal modifier that supports different size FFTs with the same bit reversal table
- * @param[in] *pBitRevTab points to bit reversal table.
- * @return none.
- */
- void arm_bitreversal_q15(
- q15_t * pSrc,
- uint32_t fftLen,
- uint16_t bitRevFactor,
- uint16_t *pBitRevTab);
- /**
- * @brief Instance structure for the Q15 RFFT/RIFFT function.
- */
- typedef struct
- {
- uint32_t fftLenReal; /**< length of the real FFT. */
- uint32_t fftLenBy2; /**< length of the complex FFT. */
- uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
- uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
- uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- q15_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
- q15_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
- arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
- } arm_rfft_instance_q15;
- /**
- * @brief Instance structure for the Q31 RFFT/RIFFT function.
- */
- typedef struct
- {
- uint32_t fftLenReal; /**< length of the real FFT. */
- uint32_t fftLenBy2; /**< length of the complex FFT. */
- uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
- uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
- uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- q31_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
- q31_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
- arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
- } arm_rfft_instance_q31;
- /**
- * @brief Instance structure for the floating-point RFFT/RIFFT function.
- */
- typedef struct
- {
- uint32_t fftLenReal; /**< length of the real FFT. */
- uint16_t fftLenBy2; /**< length of the complex FFT. */
- uint8_t ifftFlagR; /**< flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform. */
- uint8_t bitReverseFlagR; /**< flag that enables (bitReverseFlagR=1) or disables (bitReverseFlagR=0) bit reversal of output. */
- uint32_t twidCoefRModifier; /**< twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table. */
- float32_t *pTwiddleAReal; /**< points to the real twiddle factor table. */
- float32_t *pTwiddleBReal; /**< points to the imag twiddle factor table. */
- arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
- } arm_rfft_instance_f32;
- /**
- * @brief Processing function for the Q15 RFFT/RIFFT.
- * @param[in] *S points to an instance of the Q15 RFFT/RIFFT structure.
- * @param[in] *pSrc points to the input buffer.
- * @param[out] *pDst points to the output buffer.
- * @return none.
- */
- void arm_rfft_q15(
- const arm_rfft_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst);
- /**
- * @brief Initialization function for the Q15 RFFT/RIFFT.
- * @param[in, out] *S points to an instance of the Q15 RFFT/RIFFT structure.
- * @param[in] *S_CFFT points to an instance of the Q15 CFFT/CIFFT structure.
- * @param[in] fftLenReal length of the FFT.
- * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
- * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value.
- */
- arm_status arm_rfft_init_q15(
- arm_rfft_instance_q15 * S,
- arm_cfft_radix4_instance_q15 * S_CFFT,
- uint32_t fftLenReal,
- uint32_t ifftFlagR,
- uint32_t bitReverseFlag);
- /**
- * @brief Processing function for the Q31 RFFT/RIFFT.
- * @param[in] *S points to an instance of the Q31 RFFT/RIFFT structure.
- * @param[in] *pSrc points to the input buffer.
- * @param[out] *pDst points to the output buffer.
- * @return none.
- */
- void arm_rfft_q31(
- const arm_rfft_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst);
- /**
- * @brief Initialization function for the Q31 RFFT/RIFFT.
- * @param[in, out] *S points to an instance of the Q31 RFFT/RIFFT structure.
- * @param[in, out] *S_CFFT points to an instance of the Q31 CFFT/CIFFT structure.
- * @param[in] fftLenReal length of the FFT.
- * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
- * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value.
- */
- arm_status arm_rfft_init_q31(
- arm_rfft_instance_q31 * S,
- arm_cfft_radix4_instance_q31 * S_CFFT,
- uint32_t fftLenReal,
- uint32_t ifftFlagR,
- uint32_t bitReverseFlag);
- /**
- * @brief Initialization function for the floating-point RFFT/RIFFT.
- * @param[in,out] *S points to an instance of the floating-point RFFT/RIFFT structure.
- * @param[in,out] *S_CFFT points to an instance of the floating-point CFFT/CIFFT structure.
- * @param[in] fftLenReal length of the FFT.
- * @param[in] ifftFlagR flag that selects forward (ifftFlagR=0) or inverse (ifftFlagR=1) transform.
- * @param[in] bitReverseFlag flag that enables (bitReverseFlag=1) or disables (bitReverseFlag=0) bit reversal of output.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported value.
- */
- arm_status arm_rfft_init_f32(
- arm_rfft_instance_f32 * S,
- arm_cfft_radix4_instance_f32 * S_CFFT,
- uint32_t fftLenReal,
- uint32_t ifftFlagR,
- uint32_t bitReverseFlag);
- /**
- * @brief Processing function for the floating-point RFFT/RIFFT.
- * @param[in] *S points to an instance of the floating-point RFFT/RIFFT structure.
- * @param[in] *pSrc points to the input buffer.
- * @param[out] *pDst points to the output buffer.
- * @return none.
- */
- void arm_rfft_f32(
- const arm_rfft_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst);
- /**
- * @brief Instance structure for the floating-point DCT4/IDCT4 function.
- */
- typedef struct
- {
- uint16_t N; /**< length of the DCT4. */
- uint16_t Nby2; /**< half of the length of the DCT4. */
- float32_t normalize; /**< normalizing factor. */
- float32_t *pTwiddle; /**< points to the twiddle factor table. */
- float32_t *pCosFactor; /**< points to the cosFactor table. */
- arm_rfft_instance_f32 *pRfft; /**< points to the real FFT instance. */
- arm_cfft_radix4_instance_f32 *pCfft; /**< points to the complex FFT instance. */
- } arm_dct4_instance_f32;
- /**
- * @brief Initialization function for the floating-point DCT4/IDCT4.
- * @param[in,out] *S points to an instance of floating-point DCT4/IDCT4 structure.
- * @param[in] *S_RFFT points to an instance of floating-point RFFT/RIFFT structure.
- * @param[in] *S_CFFT points to an instance of floating-point CFFT/CIFFT structure.
- * @param[in] N length of the DCT4.
- * @param[in] Nby2 half of the length of the DCT4.
- * @param[in] normalize normalizing factor.
- * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>fftLenReal</code> is not a supported transform length.
- */
- arm_status arm_dct4_init_f32(
- arm_dct4_instance_f32 * S,
- arm_rfft_instance_f32 * S_RFFT,
- arm_cfft_radix4_instance_f32 * S_CFFT,
- uint16_t N,
- uint16_t Nby2,
- float32_t normalize);
- /**
- * @brief Processing function for the floating-point DCT4/IDCT4.
- * @param[in] *S points to an instance of the floating-point DCT4/IDCT4 structure.
- * @param[in] *pState points to state buffer.
- * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
- * @return none.
- */
- void arm_dct4_f32(
- const arm_dct4_instance_f32 * S,
- float32_t * pState,
- float32_t * pInlineBuffer);
- /**
- * @brief Instance structure for the Q31 DCT4/IDCT4 function.
- */
- typedef struct
- {
- uint16_t N; /**< length of the DCT4. */
- uint16_t Nby2; /**< half of the length of the DCT4. */
- q31_t normalize; /**< normalizing factor. */
- q31_t *pTwiddle; /**< points to the twiddle factor table. */
- q31_t *pCosFactor; /**< points to the cosFactor table. */
- arm_rfft_instance_q31 *pRfft; /**< points to the real FFT instance. */
- arm_cfft_radix4_instance_q31 *pCfft; /**< points to the complex FFT instance. */
- } arm_dct4_instance_q31;
- /**
- * @brief Initialization function for the Q31 DCT4/IDCT4.
- * @param[in,out] *S points to an instance of Q31 DCT4/IDCT4 structure.
- * @param[in] *S_RFFT points to an instance of Q31 RFFT/RIFFT structure
- * @param[in] *S_CFFT points to an instance of Q31 CFFT/CIFFT structure
- * @param[in] N length of the DCT4.
- * @param[in] Nby2 half of the length of the DCT4.
- * @param[in] normalize normalizing factor.
- * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
- */
- arm_status arm_dct4_init_q31(
- arm_dct4_instance_q31 * S,
- arm_rfft_instance_q31 * S_RFFT,
- arm_cfft_radix4_instance_q31 * S_CFFT,
- uint16_t N,
- uint16_t Nby2,
- q31_t normalize);
- /**
- * @brief Processing function for the Q31 DCT4/IDCT4.
- * @param[in] *S points to an instance of the Q31 DCT4 structure.
- * @param[in] *pState points to state buffer.
- * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
- * @return none.
- */
- void arm_dct4_q31(
- const arm_dct4_instance_q31 * S,
- q31_t * pState,
- q31_t * pInlineBuffer);
- /**
- * @brief Instance structure for the Q15 DCT4/IDCT4 function.
- */
- typedef struct
- {
- uint16_t N; /**< length of the DCT4. */
- uint16_t Nby2; /**< half of the length of the DCT4. */
- q15_t normalize; /**< normalizing factor. */
- q15_t *pTwiddle; /**< points to the twiddle factor table. */
- q15_t *pCosFactor; /**< points to the cosFactor table. */
- arm_rfft_instance_q15 *pRfft; /**< points to the real FFT instance. */
- arm_cfft_radix4_instance_q15 *pCfft; /**< points to the complex FFT instance. */
- } arm_dct4_instance_q15;
- /**
- * @brief Initialization function for the Q15 DCT4/IDCT4.
- * @param[in,out] *S points to an instance of Q15 DCT4/IDCT4 structure.
- * @param[in] *S_RFFT points to an instance of Q15 RFFT/RIFFT structure.
- * @param[in] *S_CFFT points to an instance of Q15 CFFT/CIFFT structure.
- * @param[in] N length of the DCT4.
- * @param[in] Nby2 half of the length of the DCT4.
- * @param[in] normalize normalizing factor.
- * @return arm_status function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_ARGUMENT_ERROR if <code>N</code> is not a supported transform length.
- */
- arm_status arm_dct4_init_q15(
- arm_dct4_instance_q15 * S,
- arm_rfft_instance_q15 * S_RFFT,
- arm_cfft_radix4_instance_q15 * S_CFFT,
- uint16_t N,
- uint16_t Nby2,
- q15_t normalize);
- /**
- * @brief Processing function for the Q15 DCT4/IDCT4.
- * @param[in] *S points to an instance of the Q15 DCT4 structure.
- * @param[in] *pState points to state buffer.
- * @param[in,out] *pInlineBuffer points to the in-place input and output buffer.
- * @return none.
- */
- void arm_dct4_q15(
- const arm_dct4_instance_q15 * S,
- q15_t * pState,
- q15_t * pInlineBuffer);
- /**
- * @brief Floating-point vector addition.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_add_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Q7 vector addition.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_add_q7(
- q7_t * pSrcA,
- q7_t * pSrcB,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Q15 vector addition.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_add_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Q31 vector addition.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_add_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Floating-point vector subtraction.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_sub_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Q7 vector subtraction.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_sub_q7(
- q7_t * pSrcA,
- q7_t * pSrcB,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Q15 vector subtraction.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_sub_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Q31 vector subtraction.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_sub_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Multiplies a floating-point vector by a scalar.
- * @param[in] *pSrc points to the input vector
- * @param[in] scale scale factor to be applied
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_scale_f32(
- float32_t * pSrc,
- float32_t scale,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Multiplies a Q7 vector by a scalar.
- * @param[in] *pSrc points to the input vector
- * @param[in] scaleFract fractional portion of the scale value
- * @param[in] shift number of bits to shift the result by
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_scale_q7(
- q7_t * pSrc,
- q7_t scaleFract,
- int8_t shift,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Multiplies a Q15 vector by a scalar.
- * @param[in] *pSrc points to the input vector
- * @param[in] scaleFract fractional portion of the scale value
- * @param[in] shift number of bits to shift the result by
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_scale_q15(
- q15_t * pSrc,
- q15_t scaleFract,
- int8_t shift,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Multiplies a Q31 vector by a scalar.
- * @param[in] *pSrc points to the input vector
- * @param[in] scaleFract fractional portion of the scale value
- * @param[in] shift number of bits to shift the result by
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_scale_q31(
- q31_t * pSrc,
- q31_t scaleFract,
- int8_t shift,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Q7 vector absolute value.
- * @param[in] *pSrc points to the input buffer
- * @param[out] *pDst points to the output buffer
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_abs_q7(
- q7_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Floating-point vector absolute value.
- * @param[in] *pSrc points to the input buffer
- * @param[out] *pDst points to the output buffer
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_abs_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Q15 vector absolute value.
- * @param[in] *pSrc points to the input buffer
- * @param[out] *pDst points to the output buffer
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_abs_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Q31 vector absolute value.
- * @param[in] *pSrc points to the input buffer
- * @param[out] *pDst points to the output buffer
- * @param[in] blockSize number of samples in each vector
- * @return none.
- */
- void arm_abs_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Dot product of floating-point vectors.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[in] blockSize number of samples in each vector
- * @param[out] *result output result returned here
- * @return none.
- */
- void arm_dot_prod_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- uint32_t blockSize,
- float32_t * result);
- /**
- * @brief Dot product of Q7 vectors.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[in] blockSize number of samples in each vector
- * @param[out] *result output result returned here
- * @return none.
- */
- void arm_dot_prod_q7(
- q7_t * pSrcA,
- q7_t * pSrcB,
- uint32_t blockSize,
- q31_t * result);
- /**
- * @brief Dot product of Q15 vectors.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[in] blockSize number of samples in each vector
- * @param[out] *result output result returned here
- * @return none.
- */
- void arm_dot_prod_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- uint32_t blockSize,
- q63_t * result);
- /**
- * @brief Dot product of Q31 vectors.
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[in] blockSize number of samples in each vector
- * @param[out] *result output result returned here
- * @return none.
- */
- void arm_dot_prod_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- uint32_t blockSize,
- q63_t * result);
- /**
- * @brief Shifts the elements of a Q7 vector a specified number of bits.
- * @param[in] *pSrc points to the input vector
- * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_shift_q7(
- q7_t * pSrc,
- int8_t shiftBits,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Shifts the elements of a Q15 vector a specified number of bits.
- * @param[in] *pSrc points to the input vector
- * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_shift_q15(
- q15_t * pSrc,
- int8_t shiftBits,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Shifts the elements of a Q31 vector a specified number of bits.
- * @param[in] *pSrc points to the input vector
- * @param[in] shiftBits number of bits to shift. A positive value shifts left; a negative value shifts right.
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_shift_q31(
- q31_t * pSrc,
- int8_t shiftBits,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Adds a constant offset to a floating-point vector.
- * @param[in] *pSrc points to the input vector
- * @param[in] offset is the offset to be added
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_offset_f32(
- float32_t * pSrc,
- float32_t offset,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Adds a constant offset to a Q7 vector.
- * @param[in] *pSrc points to the input vector
- * @param[in] offset is the offset to be added
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_offset_q7(
- q7_t * pSrc,
- q7_t offset,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Adds a constant offset to a Q15 vector.
- * @param[in] *pSrc points to the input vector
- * @param[in] offset is the offset to be added
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_offset_q15(
- q15_t * pSrc,
- q15_t offset,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Adds a constant offset to a Q31 vector.
- * @param[in] *pSrc points to the input vector
- * @param[in] offset is the offset to be added
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_offset_q31(
- q31_t * pSrc,
- q31_t offset,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Negates the elements of a floating-point vector.
- * @param[in] *pSrc points to the input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_negate_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Negates the elements of a Q7 vector.
- * @param[in] *pSrc points to the input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_negate_q7(
- q7_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Negates the elements of a Q15 vector.
- * @param[in] *pSrc points to the input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_negate_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Negates the elements of a Q31 vector.
- * @param[in] *pSrc points to the input vector
- * @param[out] *pDst points to the output vector
- * @param[in] blockSize number of samples in the vector
- * @return none.
- */
- void arm_negate_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Copies the elements of a floating-point vector.
- * @param[in] *pSrc input pointer
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
- */
- void arm_copy_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Copies the elements of a Q7 vector.
- * @param[in] *pSrc input pointer
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
- */
- void arm_copy_q7(
- q7_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Copies the elements of a Q15 vector.
- * @param[in] *pSrc input pointer
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
- */
- void arm_copy_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Copies the elements of a Q31 vector.
- * @param[in] *pSrc input pointer
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
- */
- void arm_copy_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Fills a constant value into a floating-point vector.
- * @param[in] value input value to be filled
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
- */
- void arm_fill_f32(
- float32_t value,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Fills a constant value into a Q7 vector.
- * @param[in] value input value to be filled
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
- */
- void arm_fill_q7(
- q7_t value,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Fills a constant value into a Q15 vector.
- * @param[in] value input value to be filled
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
- */
- void arm_fill_q15(
- q15_t value,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Fills a constant value into a Q31 vector.
- * @param[in] value input value to be filled
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
- */
- void arm_fill_q31(
- q31_t value,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Convolution of floating-point sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
- * @return none.
- */
- void arm_conv_f32(
- float32_t * pSrcA,
- uint32_t srcALen,
- float32_t * pSrcB,
- uint32_t srcBLen,
- float32_t * pDst);
- /**
- * @brief Convolution of Q15 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the location where the output result is written. Length srcALen+srcBLen-1.
- * @return none.
- */
- void arm_conv_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst);
- /**
- * @brief Convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
- * @return none.
- */
- void arm_conv_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst);
- /**
- * @brief Convolution of Q31 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
- * @return none.
- */
- void arm_conv_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst);
- /**
- * @brief Convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
- * @return none.
- */
- void arm_conv_fast_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst);
- /**
- * @brief Convolution of Q7 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length srcALen+srcBLen-1.
- * @return none.
- */
- void arm_conv_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst);
- /**
- * @brief Partial convolution of floating-point sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_f32(
- float32_t * pSrcA,
- uint32_t srcALen,
- float32_t * pSrcB,
- uint32_t srcBLen,
- float32_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
- /**
- * @brief Partial convolution of Q15 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
- /**
- * @brief Partial convolution of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
- /**
- * @brief Partial convolution of Q31 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
- /**
- * @brief Partial convolution of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_fast_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
- /**
- * @brief Partial convolution of Q7 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data
- * @param[in] firstIndex is the first output sample to start with.
- * @param[in] numPoints is the number of output points to be computed.
- * @return Returns either ARM_MATH_SUCCESS if the function completed correctly or ARM_MATH_ARGUMENT_ERROR if the requested subset is not in the range [0 srcALen+srcBLen-2].
- */
- arm_status arm_conv_partial_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst,
- uint32_t firstIndex,
- uint32_t numPoints);
- /**
- * @brief Instance structure for the Q15 FIR decimator.
- */
- typedef struct
- {
- uint8_t M; /**< decimation factor. */
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- } arm_fir_decimate_instance_q15;
- /**
- * @brief Instance structure for the Q31 FIR decimator.
- */
- typedef struct
- {
- uint8_t M; /**< decimation factor. */
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- } arm_fir_decimate_instance_q31;
- /**
- * @brief Instance structure for the floating-point FIR decimator.
- */
- typedef struct
- {
- uint8_t M; /**< decimation factor. */
- uint16_t numTaps; /**< number of coefficients in the filter. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- } arm_fir_decimate_instance_f32;
- /**
- * @brief Processing function for the floating-point FIR decimator.
- * @param[in] *S points to an instance of the floating-point FIR decimator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of input samples to process per call.
- * @return none
- */
- void arm_fir_decimate_f32(
- const arm_fir_decimate_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the floating-point FIR decimator.
- * @param[in,out] *S points to an instance of the floating-point FIR decimator structure.
- * @param[in] numTaps number of coefficients in the filter.
- * @param[in] M decimation factor.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
- * <code>blockSize</code> is not a multiple of <code>M</code>.
- */
- arm_status arm_fir_decimate_init_f32(
- arm_fir_decimate_instance_f32 * S,
- uint16_t numTaps,
- uint8_t M,
- float32_t * pCoeffs,
- float32_t * pState,
- uint32_t blockSize);
- /**
- * @brief Processing function for the Q15 FIR decimator.
- * @param[in] *S points to an instance of the Q15 FIR decimator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of input samples to process per call.
- * @return none
- */
- void arm_fir_decimate_q15(
- const arm_fir_decimate_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Processing function for the Q15 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
- * @param[in] *S points to an instance of the Q15 FIR decimator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of input samples to process per call.
- * @return none
- */
- void arm_fir_decimate_fast_q15(
- const arm_fir_decimate_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q15 FIR decimator.
- * @param[in,out] *S points to an instance of the Q15 FIR decimator structure.
- * @param[in] numTaps number of coefficients in the filter.
- * @param[in] M decimation factor.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
- * <code>blockSize</code> is not a multiple of <code>M</code>.
- */
- arm_status arm_fir_decimate_init_q15(
- arm_fir_decimate_instance_q15 * S,
- uint16_t numTaps,
- uint8_t M,
- q15_t * pCoeffs,
- q15_t * pState,
- uint32_t blockSize);
- /**
- * @brief Processing function for the Q31 FIR decimator.
- * @param[in] *S points to an instance of the Q31 FIR decimator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of input samples to process per call.
- * @return none
- */
- void arm_fir_decimate_q31(
- const arm_fir_decimate_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Processing function for the Q31 FIR decimator (fast variant) for Cortex-M3 and Cortex-M4.
- * @param[in] *S points to an instance of the Q31 FIR decimator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of input samples to process per call.
- * @return none
- */
- void arm_fir_decimate_fast_q31(
- arm_fir_decimate_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q31 FIR decimator.
- * @param[in,out] *S points to an instance of the Q31 FIR decimator structure.
- * @param[in] numTaps number of coefficients in the filter.
- * @param[in] M decimation factor.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
- * <code>blockSize</code> is not a multiple of <code>M</code>.
- */
- arm_status arm_fir_decimate_init_q31(
- arm_fir_decimate_instance_q31 * S,
- uint16_t numTaps,
- uint8_t M,
- q31_t * pCoeffs,
- q31_t * pState,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the Q15 FIR interpolator.
- */
- typedef struct
- {
- uint8_t L; /**< upsample factor. */
- uint16_t phaseLength; /**< length of each polyphase filter component. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
- q15_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
- } arm_fir_interpolate_instance_q15;
- /**
- * @brief Instance structure for the Q31 FIR interpolator.
- */
- typedef struct
- {
- uint8_t L; /**< upsample factor. */
- uint16_t phaseLength; /**< length of each polyphase filter component. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
- q31_t *pState; /**< points to the state variable array. The array is of length blockSize+phaseLength-1. */
- } arm_fir_interpolate_instance_q31;
- /**
- * @brief Instance structure for the floating-point FIR interpolator.
- */
- typedef struct
- {
- uint8_t L; /**< upsample factor. */
- uint16_t phaseLength; /**< length of each polyphase filter component. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length L*phaseLength. */
- float32_t *pState; /**< points to the state variable array. The array is of length phaseLength+numTaps-1. */
- } arm_fir_interpolate_instance_f32;
- /**
- * @brief Processing function for the Q15 FIR interpolator.
- * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
- void arm_fir_interpolate_q15(
- const arm_fir_interpolate_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q15 FIR interpolator.
- * @param[in,out] *S points to an instance of the Q15 FIR interpolator structure.
- * @param[in] L upsample factor.
- * @param[in] numTaps number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficient buffer.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
- * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
- */
- arm_status arm_fir_interpolate_init_q15(
- arm_fir_interpolate_instance_q15 * S,
- uint8_t L,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- uint32_t blockSize);
- /**
- * @brief Processing function for the Q31 FIR interpolator.
- * @param[in] *S points to an instance of the Q15 FIR interpolator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
- void arm_fir_interpolate_q31(
- const arm_fir_interpolate_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q31 FIR interpolator.
- * @param[in,out] *S points to an instance of the Q31 FIR interpolator structure.
- * @param[in] L upsample factor.
- * @param[in] numTaps number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficient buffer.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
- * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
- */
- arm_status arm_fir_interpolate_init_q31(
- arm_fir_interpolate_instance_q31 * S,
- uint8_t L,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- uint32_t blockSize);
- /**
- * @brief Processing function for the floating-point FIR interpolator.
- * @param[in] *S points to an instance of the floating-point FIR interpolator structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
- void arm_fir_interpolate_f32(
- const arm_fir_interpolate_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the floating-point FIR interpolator.
- * @param[in,out] *S points to an instance of the floating-point FIR interpolator structure.
- * @param[in] L upsample factor.
- * @param[in] numTaps number of filter coefficients in the filter.
- * @param[in] *pCoeffs points to the filter coefficient buffer.
- * @param[in] *pState points to the state buffer.
- * @param[in] blockSize number of input samples to process per call.
- * @return The function returns ARM_MATH_SUCCESS if initialization is successful or ARM_MATH_LENGTH_ERROR if
- * the filter length <code>numTaps</code> is not a multiple of the interpolation factor <code>L</code>.
- */
- arm_status arm_fir_interpolate_init_f32(
- arm_fir_interpolate_instance_f32 * S,
- uint8_t L,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the high precision Q31 Biquad cascade filter.
- */
- typedef struct
- {
- uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- q63_t *pState; /**< points to the array of state coefficients. The array is of length 4*numStages. */
- q31_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
- uint8_t postShift; /**< additional shift, in bits, applied to each output sample. */
- } arm_biquad_cas_df1_32x64_ins_q31;
- /**
- * @param[in] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_biquad_cas_df1_32x64_q31(
- const arm_biquad_cas_df1_32x64_ins_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @param[in,out] *S points to an instance of the high precision Q31 Biquad cascade filter structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] postShift shift to be applied to the output. Varies according to the coefficients format
- * @return none
- */
- void arm_biquad_cas_df1_32x64_init_q31(
- arm_biquad_cas_df1_32x64_ins_q31 * S,
- uint8_t numStages,
- q31_t * pCoeffs,
- q63_t * pState,
- uint8_t postShift);
- /**
- * @brief Instance structure for the floating-point transposed direct form II Biquad cascade filter.
- */
- typedef struct
- {
- uint8_t numStages; /**< number of 2nd order stages in the filter. Overall order is 2*numStages. */
- float32_t *pState; /**< points to the array of state coefficients. The array is of length 2*numStages. */
- float32_t *pCoeffs; /**< points to the array of coefficients. The array is of length 5*numStages. */
- } arm_biquad_cascade_df2T_instance_f32;
- /**
- * @brief Processing function for the floating-point transposed direct form II Biquad cascade filter.
- * @param[in] *S points to an instance of the filter data structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_biquad_cascade_df2T_f32(
- const arm_biquad_cascade_df2T_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the floating-point transposed direct form II Biquad cascade filter.
- * @param[in,out] *S points to an instance of the filter data structure.
- * @param[in] numStages number of 2nd order stages in the filter.
- * @param[in] *pCoeffs points to the filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @return none
- */
- void arm_biquad_cascade_df2T_init_f32(
- arm_biquad_cascade_df2T_instance_f32 * S,
- uint8_t numStages,
- float32_t * pCoeffs,
- float32_t * pState);
- /**
- * @brief Instance structure for the Q15 FIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of filter stages. */
- q15_t *pState; /**< points to the state variable array. The array is of length numStages. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
- } arm_fir_lattice_instance_q15;
- /**
- * @brief Instance structure for the Q31 FIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of filter stages. */
- q31_t *pState; /**< points to the state variable array. The array is of length numStages. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
- } arm_fir_lattice_instance_q31;
- /**
- * @brief Instance structure for the floating-point FIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of filter stages. */
- float32_t *pState; /**< points to the state variable array. The array is of length numStages. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numStages. */
- } arm_fir_lattice_instance_f32;
- /**
- * @brief Initialization function for the Q15 FIR lattice filter.
- * @param[in] *S points to an instance of the Q15 FIR lattice structure.
- * @param[in] numStages number of filter stages.
- * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
- * @param[in] *pState points to the state buffer. The array is of length numStages.
- * @return none.
- */
- void arm_fir_lattice_init_q15(
- arm_fir_lattice_instance_q15 * S,
- uint16_t numStages,
- q15_t * pCoeffs,
- q15_t * pState);
- /**
- * @brief Processing function for the Q15 FIR lattice filter.
- * @param[in] *S points to an instance of the Q15 FIR lattice structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_fir_lattice_q15(
- const arm_fir_lattice_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q31 FIR lattice filter.
- * @param[in] *S points to an instance of the Q31 FIR lattice structure.
- * @param[in] numStages number of filter stages.
- * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
- * @param[in] *pState points to the state buffer. The array is of length numStages.
- * @return none.
- */
- void arm_fir_lattice_init_q31(
- arm_fir_lattice_instance_q31 * S,
- uint16_t numStages,
- q31_t * pCoeffs,
- q31_t * pState);
- /**
- * @brief Processing function for the Q31 FIR lattice filter.
- * @param[in] *S points to an instance of the Q31 FIR lattice structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_fir_lattice_q31(
- const arm_fir_lattice_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the floating-point FIR lattice filter.
- * @param[in] *S points to an instance of the floating-point FIR lattice structure.
- * @param[in] numStages number of filter stages.
- * @param[in] *pCoeffs points to the coefficient buffer. The array is of length numStages.
- * @param[in] *pState points to the state buffer. The array is of length numStages.
- * @return none.
- */
- void arm_fir_lattice_init_f32(
- arm_fir_lattice_instance_f32 * S,
- uint16_t numStages,
- float32_t * pCoeffs,
- float32_t * pState);
- /**
- * @brief Processing function for the floating-point FIR lattice filter.
- * @param[in] *S points to an instance of the floating-point FIR lattice structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_fir_lattice_f32(
- const arm_fir_lattice_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the Q15 IIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of stages in the filter. */
- q15_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
- q15_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
- q15_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
- } arm_iir_lattice_instance_q15;
- /**
- * @brief Instance structure for the Q31 IIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of stages in the filter. */
- q31_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
- q31_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
- q31_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
- } arm_iir_lattice_instance_q31;
- /**
- * @brief Instance structure for the floating-point IIR lattice filter.
- */
- typedef struct
- {
- uint16_t numStages; /**< number of stages in the filter. */
- float32_t *pState; /**< points to the state variable array. The array is of length numStages+blockSize. */
- float32_t *pkCoeffs; /**< points to the reflection coefficient array. The array is of length numStages. */
- float32_t *pvCoeffs; /**< points to the ladder coefficient array. The array is of length numStages+1. */
- } arm_iir_lattice_instance_f32;
- /**
- * @brief Processing function for the floating-point IIR lattice filter.
- * @param[in] *S points to an instance of the floating-point IIR lattice structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_iir_lattice_f32(
- const arm_iir_lattice_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the floating-point IIR lattice filter.
- * @param[in] *S points to an instance of the floating-point IIR lattice structure.
- * @param[in] numStages number of stages in the filter.
- * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
- * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
- * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize-1.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_iir_lattice_init_f32(
- arm_iir_lattice_instance_f32 * S,
- uint16_t numStages,
- float32_t *pkCoeffs,
- float32_t *pvCoeffs,
- float32_t *pState,
- uint32_t blockSize);
- /**
- * @brief Processing function for the Q31 IIR lattice filter.
- * @param[in] *S points to an instance of the Q31 IIR lattice structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_iir_lattice_q31(
- const arm_iir_lattice_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q31 IIR lattice filter.
- * @param[in] *S points to an instance of the Q31 IIR lattice structure.
- * @param[in] numStages number of stages in the filter.
- * @param[in] *pkCoeffs points to the reflection coefficient buffer. The array is of length numStages.
- * @param[in] *pvCoeffs points to the ladder coefficient buffer. The array is of length numStages+1.
- * @param[in] *pState points to the state buffer. The array is of length numStages+blockSize.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_iir_lattice_init_q31(
- arm_iir_lattice_instance_q31 * S,
- uint16_t numStages,
- q31_t *pkCoeffs,
- q31_t *pvCoeffs,
- q31_t *pState,
- uint32_t blockSize);
- /**
- * @brief Processing function for the Q15 IIR lattice filter.
- * @param[in] *S points to an instance of the Q15 IIR lattice structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_iir_lattice_q15(
- const arm_iir_lattice_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q15 IIR lattice filter.
- * @param[in] *S points to an instance of the fixed-point Q15 IIR lattice structure.
- * @param[in] numStages number of stages in the filter.
- * @param[in] *pkCoeffs points to reflection coefficient buffer. The array is of length numStages.
- * @param[in] *pvCoeffs points to ladder coefficient buffer. The array is of length numStages+1.
- * @param[in] *pState points to state buffer. The array is of length numStages+blockSize.
- * @param[in] blockSize number of samples to process per call.
- * @return none.
- */
- void arm_iir_lattice_init_q15(
- arm_iir_lattice_instance_q15 * S,
- uint16_t numStages,
- q15_t *pkCoeffs,
- q15_t *pvCoeffs,
- q15_t *pState,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the floating-point LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- float32_t mu; /**< step size that controls filter coefficient updates. */
- } arm_lms_instance_f32;
- /**
- * @brief Processing function for floating-point LMS filter.
- * @param[in] *S points to an instance of the floating-point LMS filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[in] *pRef points to the block of reference data.
- * @param[out] *pOut points to the block of output data.
- * @param[out] *pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_lms_f32(
- const arm_lms_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pRef,
- float32_t * pOut,
- float32_t * pErr,
- uint32_t blockSize);
- /**
- * @brief Initialization function for floating-point LMS filter.
- * @param[in] *S points to an instance of the floating-point LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] *pCoeffs points to the coefficient buffer.
- * @param[in] *pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_lms_init_f32(
- arm_lms_instance_f32 * S,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- float32_t mu,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the Q15 LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- q15_t mu; /**< step size that controls filter coefficient updates. */
- uint32_t postShift; /**< bit shift applied to coefficients. */
- } arm_lms_instance_q15;
- /**
- * @brief Initialization function for the Q15 LMS filter.
- * @param[in] *S points to an instance of the Q15 LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] *pCoeffs points to the coefficient buffer.
- * @param[in] *pState points to the state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @param[in] postShift bit shift applied to coefficients.
- * @return none.
- */
- void arm_lms_init_q15(
- arm_lms_instance_q15 * S,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- q15_t mu,
- uint32_t blockSize,
- uint32_t postShift);
- /**
- * @brief Processing function for Q15 LMS filter.
- * @param[in] *S points to an instance of the Q15 LMS filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[in] *pRef points to the block of reference data.
- * @param[out] *pOut points to the block of output data.
- * @param[out] *pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_lms_q15(
- const arm_lms_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pRef,
- q15_t * pOut,
- q15_t * pErr,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the Q31 LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- q31_t mu; /**< step size that controls filter coefficient updates. */
- uint32_t postShift; /**< bit shift applied to coefficients. */
- } arm_lms_instance_q31;
- /**
- * @brief Processing function for Q31 LMS filter.
- * @param[in] *S points to an instance of the Q15 LMS filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[in] *pRef points to the block of reference data.
- * @param[out] *pOut points to the block of output data.
- * @param[out] *pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_lms_q31(
- const arm_lms_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pRef,
- q31_t * pOut,
- q31_t * pErr,
- uint32_t blockSize);
- /**
- * @brief Initialization function for Q31 LMS filter.
- * @param[in] *S points to an instance of the Q31 LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] *pCoeffs points to coefficient buffer.
- * @param[in] *pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @param[in] postShift bit shift applied to coefficients.
- * @return none.
- */
- void arm_lms_init_q31(
- arm_lms_instance_q31 * S,
- uint16_t numTaps,
- q31_t *pCoeffs,
- q31_t *pState,
- q31_t mu,
- uint32_t blockSize,
- uint32_t postShift);
- /**
- * @brief Instance structure for the floating-point normalized LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- float32_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- float32_t mu; /**< step size that control filter coefficient updates. */
- float32_t energy; /**< saves previous frame energy. */
- float32_t x0; /**< saves previous input sample. */
- } arm_lms_norm_instance_f32;
- /**
- * @brief Processing function for floating-point normalized LMS filter.
- * @param[in] *S points to an instance of the floating-point normalized LMS filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[in] *pRef points to the block of reference data.
- * @param[out] *pOut points to the block of output data.
- * @param[out] *pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_lms_norm_f32(
- arm_lms_norm_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pRef,
- float32_t * pOut,
- float32_t * pErr,
- uint32_t blockSize);
- /**
- * @brief Initialization function for floating-point normalized LMS filter.
- * @param[in] *S points to an instance of the floating-point LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] *pCoeffs points to coefficient buffer.
- * @param[in] *pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_lms_norm_init_f32(
- arm_lms_norm_instance_f32 * S,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- float32_t mu,
- uint32_t blockSize);
- /**
- * @brief Instance structure for the Q31 normalized LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- q31_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- q31_t mu; /**< step size that controls filter coefficient updates. */
- uint8_t postShift; /**< bit shift applied to coefficients. */
- q31_t *recipTable; /**< points to the reciprocal initial value table. */
- q31_t energy; /**< saves previous frame energy. */
- q31_t x0; /**< saves previous input sample. */
- } arm_lms_norm_instance_q31;
- /**
- * @brief Processing function for Q31 normalized LMS filter.
- * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[in] *pRef points to the block of reference data.
- * @param[out] *pOut points to the block of output data.
- * @param[out] *pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_lms_norm_q31(
- arm_lms_norm_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pRef,
- q31_t * pOut,
- q31_t * pErr,
- uint32_t blockSize);
- /**
- * @brief Initialization function for Q31 normalized LMS filter.
- * @param[in] *S points to an instance of the Q31 normalized LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] *pCoeffs points to coefficient buffer.
- * @param[in] *pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @param[in] postShift bit shift applied to coefficients.
- * @return none.
- */
- void arm_lms_norm_init_q31(
- arm_lms_norm_instance_q31 * S,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- q31_t mu,
- uint32_t blockSize,
- uint8_t postShift);
- /**
- * @brief Instance structure for the Q15 normalized LMS filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< Number of coefficients in the filter. */
- q15_t *pState; /**< points to the state variable array. The array is of length numTaps+blockSize-1. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps. */
- q15_t mu; /**< step size that controls filter coefficient updates. */
- uint8_t postShift; /**< bit shift applied to coefficients. */
- q15_t *recipTable; /**< Points to the reciprocal initial value table. */
- q15_t energy; /**< saves previous frame energy. */
- q15_t x0; /**< saves previous input sample. */
- } arm_lms_norm_instance_q15;
- /**
- * @brief Processing function for Q15 normalized LMS filter.
- * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[in] *pRef points to the block of reference data.
- * @param[out] *pOut points to the block of output data.
- * @param[out] *pErr points to the block of error data.
- * @param[in] blockSize number of samples to process.
- * @return none.
- */
- void arm_lms_norm_q15(
- arm_lms_norm_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pRef,
- q15_t * pOut,
- q15_t * pErr,
- uint32_t blockSize);
- /**
- * @brief Initialization function for Q15 normalized LMS filter.
- * @param[in] *S points to an instance of the Q15 normalized LMS filter structure.
- * @param[in] numTaps number of filter coefficients.
- * @param[in] *pCoeffs points to coefficient buffer.
- * @param[in] *pState points to state buffer.
- * @param[in] mu step size that controls filter coefficient updates.
- * @param[in] blockSize number of samples to process.
- * @param[in] postShift bit shift applied to coefficients.
- * @return none.
- */
- void arm_lms_norm_init_q15(
- arm_lms_norm_instance_q15 * S,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- q15_t mu,
- uint32_t blockSize,
- uint8_t postShift);
- /**
- * @brief Correlation of floating-point sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
- */
- void arm_correlate_f32(
- float32_t * pSrcA,
- uint32_t srcALen,
- float32_t * pSrcB,
- uint32_t srcBLen,
- float32_t * pDst);
- /**
- * @brief Correlation of Q15 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
- */
- void arm_correlate_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst);
- /**
- * @brief Correlation of Q15 sequences (fast version) for Cortex-M3 and Cortex-M4.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
- */
- void arm_correlate_fast_q15(
- q15_t * pSrcA,
- uint32_t srcALen,
- q15_t * pSrcB,
- uint32_t srcBLen,
- q15_t * pDst);
- /**
- * @brief Correlation of Q31 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
- */
- void arm_correlate_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst);
- /**
- * @brief Correlation of Q31 sequences (fast version) for Cortex-M3 and Cortex-M4
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
- */
- void arm_correlate_fast_q31(
- q31_t * pSrcA,
- uint32_t srcALen,
- q31_t * pSrcB,
- uint32_t srcBLen,
- q31_t * pDst);
- /**
- * @brief Correlation of Q7 sequences.
- * @param[in] *pSrcA points to the first input sequence.
- * @param[in] srcALen length of the first input sequence.
- * @param[in] *pSrcB points to the second input sequence.
- * @param[in] srcBLen length of the second input sequence.
- * @param[out] *pDst points to the block of output data Length 2 * max(srcALen, srcBLen) - 1.
- * @return none.
- */
- void arm_correlate_q7(
- q7_t * pSrcA,
- uint32_t srcALen,
- q7_t * pSrcB,
- uint32_t srcBLen,
- q7_t * pDst);
- /**
- * @brief Instance structure for the floating-point sparse FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
- float32_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
- float32_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
- int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
- } arm_fir_sparse_instance_f32;
- /**
- * @brief Instance structure for the Q31 sparse FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
- q31_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
- q31_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
- int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
- } arm_fir_sparse_instance_q31;
- /**
- * @brief Instance structure for the Q15 sparse FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
- q15_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
- q15_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
- int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
- } arm_fir_sparse_instance_q15;
- /**
- * @brief Instance structure for the Q7 sparse FIR filter.
- */
- typedef struct
- {
- uint16_t numTaps; /**< number of coefficients in the filter. */
- uint16_t stateIndex; /**< state buffer index. Points to the oldest sample in the state buffer. */
- q7_t *pState; /**< points to the state buffer array. The array is of length maxDelay+blockSize-1. */
- q7_t *pCoeffs; /**< points to the coefficient array. The array is of length numTaps.*/
- uint16_t maxDelay; /**< maximum offset specified by the pTapDelay array. */
- int32_t *pTapDelay; /**< points to the array of delay values. The array is of length numTaps. */
- } arm_fir_sparse_instance_q7;
- /**
- * @brief Processing function for the floating-point sparse FIR filter.
- * @param[in] *S points to an instance of the floating-point sparse FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
- * @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
- void arm_fir_sparse_f32(
- arm_fir_sparse_instance_f32 * S,
- float32_t * pSrc,
- float32_t * pDst,
- float32_t * pScratchIn,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the floating-point sparse FIR filter.
- * @param[in,out] *S points to an instance of the floating-point sparse FIR structure.
- * @param[in] numTaps number of nonzero coefficients in the filter.
- * @param[in] *pCoeffs points to the array of filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] *pTapDelay points to the array of offset times.
- * @param[in] maxDelay maximum offset time supported.
- * @param[in] blockSize number of samples that will be processed per block.
- * @return none
- */
- void arm_fir_sparse_init_f32(
- arm_fir_sparse_instance_f32 * S,
- uint16_t numTaps,
- float32_t * pCoeffs,
- float32_t * pState,
- int32_t * pTapDelay,
- uint16_t maxDelay,
- uint32_t blockSize);
- /**
- * @brief Processing function for the Q31 sparse FIR filter.
- * @param[in] *S points to an instance of the Q31 sparse FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
- * @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
- void arm_fir_sparse_q31(
- arm_fir_sparse_instance_q31 * S,
- q31_t * pSrc,
- q31_t * pDst,
- q31_t * pScratchIn,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q31 sparse FIR filter.
- * @param[in,out] *S points to an instance of the Q31 sparse FIR structure.
- * @param[in] numTaps number of nonzero coefficients in the filter.
- * @param[in] *pCoeffs points to the array of filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] *pTapDelay points to the array of offset times.
- * @param[in] maxDelay maximum offset time supported.
- * @param[in] blockSize number of samples that will be processed per block.
- * @return none
- */
- void arm_fir_sparse_init_q31(
- arm_fir_sparse_instance_q31 * S,
- uint16_t numTaps,
- q31_t * pCoeffs,
- q31_t * pState,
- int32_t * pTapDelay,
- uint16_t maxDelay,
- uint32_t blockSize);
- /**
- * @brief Processing function for the Q15 sparse FIR filter.
- * @param[in] *S points to an instance of the Q15 sparse FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
- * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
- * @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
- void arm_fir_sparse_q15(
- arm_fir_sparse_instance_q15 * S,
- q15_t * pSrc,
- q15_t * pDst,
- q15_t * pScratchIn,
- q31_t * pScratchOut,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q15 sparse FIR filter.
- * @param[in,out] *S points to an instance of the Q15 sparse FIR structure.
- * @param[in] numTaps number of nonzero coefficients in the filter.
- * @param[in] *pCoeffs points to the array of filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] *pTapDelay points to the array of offset times.
- * @param[in] maxDelay maximum offset time supported.
- * @param[in] blockSize number of samples that will be processed per block.
- * @return none
- */
- void arm_fir_sparse_init_q15(
- arm_fir_sparse_instance_q15 * S,
- uint16_t numTaps,
- q15_t * pCoeffs,
- q15_t * pState,
- int32_t * pTapDelay,
- uint16_t maxDelay,
- uint32_t blockSize);
- /**
- * @brief Processing function for the Q7 sparse FIR filter.
- * @param[in] *S points to an instance of the Q7 sparse FIR structure.
- * @param[in] *pSrc points to the block of input data.
- * @param[out] *pDst points to the block of output data
- * @param[in] *pScratchIn points to a temporary buffer of size blockSize.
- * @param[in] *pScratchOut points to a temporary buffer of size blockSize.
- * @param[in] blockSize number of input samples to process per call.
- * @return none.
- */
- void arm_fir_sparse_q7(
- arm_fir_sparse_instance_q7 * S,
- q7_t * pSrc,
- q7_t * pDst,
- q7_t * pScratchIn,
- q31_t * pScratchOut,
- uint32_t blockSize);
- /**
- * @brief Initialization function for the Q7 sparse FIR filter.
- * @param[in,out] *S points to an instance of the Q7 sparse FIR structure.
- * @param[in] numTaps number of nonzero coefficients in the filter.
- * @param[in] *pCoeffs points to the array of filter coefficients.
- * @param[in] *pState points to the state buffer.
- * @param[in] *pTapDelay points to the array of offset times.
- * @param[in] maxDelay maximum offset time supported.
- * @param[in] blockSize number of samples that will be processed per block.
- * @return none
- */
- void arm_fir_sparse_init_q7(
- arm_fir_sparse_instance_q7 * S,
- uint16_t numTaps,
- q7_t * pCoeffs,
- q7_t * pState,
- int32_t *pTapDelay,
- uint16_t maxDelay,
- uint32_t blockSize);
- /*
- * @brief Floating-point sin_cos function.
- * @param[in] theta input value in degrees
- * @param[out] *pSinVal points to the processed sine output.
- * @param[out] *pCosVal points to the processed cos output.
- * @return none.
- */
- void arm_sin_cos_f32(
- float32_t theta,
- float32_t *pSinVal,
- float32_t *pCcosVal);
- /*
- * @brief Q31 sin_cos function.
- * @param[in] theta scaled input value in degrees
- * @param[out] *pSinVal points to the processed sine output.
- * @param[out] *pCosVal points to the processed cosine output.
- * @return none.
- */
- void arm_sin_cos_q31(
- q31_t theta,
- q31_t *pSinVal,
- q31_t *pCosVal);
- /**
- * @brief Floating-point complex conjugate.
- * @param[in] *pSrc points to the input vector
- * @param[out] *pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- * @return none.
- */
- void arm_cmplx_conj_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t numSamples);
- /**
- * @brief Q31 complex conjugate.
- * @param[in] *pSrc points to the input vector
- * @param[out] *pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- * @return none.
- */
- void arm_cmplx_conj_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t numSamples);
- /**
- * @brief Q15 complex conjugate.
- * @param[in] *pSrc points to the input vector
- * @param[out] *pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- * @return none.
- */
- void arm_cmplx_conj_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t numSamples);
- /**
- * @brief Floating-point complex magnitude squared
- * @param[in] *pSrc points to the complex input vector
- * @param[out] *pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- * @return none.
- */
- void arm_cmplx_mag_squared_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t numSamples);
- /**
- * @brief Q31 complex magnitude squared
- * @param[in] *pSrc points to the complex input vector
- * @param[out] *pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- * @return none.
- */
- void arm_cmplx_mag_squared_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t numSamples);
- /**
- * @brief Q15 complex magnitude squared
- * @param[in] *pSrc points to the complex input vector
- * @param[out] *pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- * @return none.
- */
- void arm_cmplx_mag_squared_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t numSamples);
- /**
- * @ingroup groupController
- */
- /**
- * @defgroup PID PID Motor Control
- *
- * A Proportional Integral Derivative (PID) controller is a generic feedback control
- * loop mechanism widely used in industrial control systems.
- * A PID controller is the most commonly used type of feedback controller.
- *
- * This set of functions implements (PID) controllers
- * for Q15, Q31, and floating-point data types. The functions operate on a single sample
- * of data and each call to the function returns a single processed value.
- * <code>S</code> points to an instance of the PID control data structure. <code>in</code>
- * is the input sample value. The functions return the output value.
- *
- * \par Algorithm:
- * <pre>
- * y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2]
- * A0 = Kp + Ki + Kd
- * A1 = (-Kp ) - (2 * Kd )
- * A2 = Kd </pre>
- *
- * \par
- * where \c Kp is proportional constant, \c Ki is Integral constant and \c Kd is Derivative constant
- *
- * \par
- * \image html PID.gif "Proportional Integral Derivative Controller"
- *
- * \par
- * The PID controller calculates an "error" value as the difference between
- * the measured output and the reference input.
- * The controller attempts to minimize the error by adjusting the process control inputs.
- * The proportional value determines the reaction to the current error,
- * the integral value determines the reaction based on the sum of recent errors,
- * and the derivative value determines the reaction based on the rate at which the error has been changing.
- *
- * \par Instance Structure
- * The Gains A0, A1, A2 and state variables for a PID controller are stored together in an instance data structure.
- * A separate instance structure must be defined for each PID Controller.
- * There are separate instance structure declarations for each of the 3 supported data types.
- *
- * \par Reset Functions
- * There is also an associated reset function for each data type which clears the state array.
- *
- * \par Initialization Functions
- * There is also an associated initialization function for each data type.
- * The initialization function performs the following operations:
- * - Initializes the Gains A0, A1, A2 from Kp,Ki, Kd gains.
- * - Zeros out the values in the state buffer.
- *
- * \par
- * Instance structure cannot be placed into a const data section and it is recommended to use the initialization function.
- *
- * \par Fixed-Point Behavior
- * Care must be taken when using the fixed-point versions of the PID Controller functions.
- * In particular, the overflow and saturation behavior of the accumulator used in each function must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
- /**
- * @addtogroup PID
- * @{
- */
- /**
- * @brief Process function for the floating-point PID Control.
- * @param[in,out] *S is an instance of the floating-point PID Control structure
- * @param[in] in input sample to process
- * @return out processed output sample.
- */
- static __INLINE float32_t arm_pid_f32(
- arm_pid_instance_f32 * S,
- float32_t in)
- {
- float32_t out;
- /* y[n] = y[n-1] + A0 * x[n] + A1 * x[n-1] + A2 * x[n-2] */
- out = (S->A0 * in) +
- (S->A1 * S->state[0]) + (S->A2 * S->state[1]) + (S->state[2]);
- /* Update state */
- S->state[1] = S->state[0];
- S->state[0] = in;
- S->state[2] = out;
- /* return to application */
- return (out);
- }
- /**
- * @brief Process function for the Q31 PID Control.
- * @param[in,out] *S points to an instance of the Q31 PID Control structure
- * @param[in] in input sample to process
- * @return out processed output sample.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using an internal 64-bit accumulator.
- * The accumulator has a 2.62 format and maintains full precision of the intermediate multiplication results but provides only a single guard bit.
- * Thus, if the accumulator result overflows it wraps around rather than clip.
- * In order to avoid overflows completely the input signal must be scaled down by 2 bits as there are four additions.
- * After all multiply-accumulates are performed, the 2.62 accumulator is truncated to 1.32 format and then saturated to 1.31 format.
- */
- static __INLINE q31_t arm_pid_q31(
- arm_pid_instance_q31 * S,
- q31_t in)
- {
- q63_t acc;
- q31_t out;
- /* acc = A0 * x[n] */
- acc = (q63_t) S->A0 * in;
- /* acc += A1 * x[n-1] */
- acc += (q63_t) S->A1 * S->state[0];
- /* acc += A2 * x[n-2] */
- acc += (q63_t) S->A2 * S->state[1];
- /* convert output to 1.31 format to add y[n-1] */
- out = (q31_t) (acc >> 31u);
- /* out += y[n-1] */
- out += S->state[2];
- /* Update state */
- S->state[1] = S->state[0];
- S->state[0] = in;
- S->state[2] = out;
- /* return to application */
- return (out);
- }
- /**
- * @brief Process function for the Q15 PID Control.
- * @param[in,out] *S points to an instance of the Q15 PID Control structure
- * @param[in] in input sample to process
- * @return out processed output sample.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using a 64-bit internal accumulator.
- * Both Gains and state variables are represented in 1.15 format and multiplications yield a 2.30 result.
- * The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
- * There is no risk of internal overflow with this approach and the full precision of intermediate multiplications is preserved.
- * After all additions have been performed, the accumulator is truncated to 34.15 format by discarding low 15 bits.
- * Lastly, the accumulator is saturated to yield a result in 1.15 format.
- */
- static __INLINE q15_t arm_pid_q15(
- arm_pid_instance_q15 * S,
- q15_t in)
- {
- q63_t acc;
- q15_t out;
- /* Implementation of PID controller */
- #ifdef ARM_MATH_CM0
- /* acc = A0 * x[n] */
- acc = ((q31_t) S->A0 )* in ;
- #else
-
- /* acc = A0 * x[n] */
- acc = (q31_t) __SMUAD(S->A0, in);
-
- #endif
- #ifdef ARM_MATH_CM0
-
- /* acc += A1 * x[n-1] + A2 * x[n-2] */
- acc += (q31_t) S->A1 * S->state[0] ;
- acc += (q31_t) S->A2 * S->state[1] ;
- #else
- /* acc += A1 * x[n-1] + A2 * x[n-2] */
- acc = __SMLALD(S->A1, (q31_t)__SIMD32(S->state), acc);
- #endif
- /* acc += y[n-1] */
- acc += (q31_t) S->state[2] << 15;
- /* saturate the output */
- out = (q15_t) (__SSAT((acc >> 15), 16));
- /* Update state */
- S->state[1] = S->state[0];
- S->state[0] = in;
- S->state[2] = out;
- /* return to application */
- return (out);
- }
-
- /**
- * @} end of PID group
- */
- /**
- * @brief Floating-point matrix inverse.
- * @param[in] *src points to the instance of the input floating-point matrix structure.
- * @param[out] *dst points to the instance of the output floating-point matrix structure.
- * @return The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match.
- * If the input matrix is singular (does not have an inverse), then the algorithm terminates and returns error status ARM_MATH_SINGULAR.
- */
- arm_status arm_mat_inverse_f32(
- const arm_matrix_instance_f32 * src,
- arm_matrix_instance_f32 * dst);
-
-
- /**
- * @ingroup groupController
- */
- /**
- * @defgroup clarke Vector Clarke Transform
- * Forward Clarke transform converts the instantaneous stator phases into a two-coordinate time invariant vector.
- * Generally the Clarke transform uses three-phase currents <code>Ia, Ib and Ic</code> to calculate currents
- * in the two-phase orthogonal stator axis <code>Ialpha</code> and <code>Ibeta</code>.
- * When <code>Ialpha</code> is superposed with <code>Ia</code> as shown in the figure below
- * \image html clarke.gif Stator current space vector and its components in (a,b).
- * and <code>Ia + Ib + Ic = 0</code>, in this condition <code>Ialpha</code> and <code>Ibeta</code>
- * can be calculated using only <code>Ia</code> and <code>Ib</code>.
- *
- * The function operates on a single sample of data and each call to the function returns the processed output.
- * The library provides separate functions for Q31 and floating-point data types.
- * \par Algorithm
- * \image html clarkeFormula.gif
- * where <code>Ia</code> and <code>Ib</code> are the instantaneous stator phases and
- * <code>pIalpha</code> and <code>pIbeta</code> are the two coordinates of time invariant vector.
- * \par Fixed-Point Behavior
- * Care must be taken when using the Q31 version of the Clarke transform.
- * In particular, the overflow and saturation behavior of the accumulator used must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
- /**
- * @addtogroup clarke
- * @{
- */
- /**
- *
- * @brief Floating-point Clarke transform
- * @param[in] Ia input three-phase coordinate <code>a</code>
- * @param[in] Ib input three-phase coordinate <code>b</code>
- * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
- * @return none.
- */
- static __INLINE void arm_clarke_f32(
- float32_t Ia,
- float32_t Ib,
- float32_t * pIalpha,
- float32_t * pIbeta)
- {
- /* Calculate pIalpha using the equation, pIalpha = Ia */
- *pIalpha = Ia;
- /* Calculate pIbeta using the equation, pIbeta = (1/sqrt(3)) * Ia + (2/sqrt(3)) * Ib */
- *pIbeta = ((float32_t) 0.57735026919 * Ia + (float32_t) 1.15470053838 * Ib);
- }
- /**
- * @brief Clarke transform for Q31 version
- * @param[in] Ia input three-phase coordinate <code>a</code>
- * @param[in] Ib input three-phase coordinate <code>b</code>
- * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using an internal 32-bit accumulator.
- * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
- * There is saturation on the addition, hence there is no risk of overflow.
- */
- static __INLINE void arm_clarke_q31(
- q31_t Ia,
- q31_t Ib,
- q31_t * pIalpha,
- q31_t * pIbeta)
- {
- q31_t product1, product2; /* Temporary variables used to store intermediate results */
- /* Calculating pIalpha from Ia by equation pIalpha = Ia */
- *pIalpha = Ia;
- /* Intermediate product is calculated by (1/(sqrt(3)) * Ia) */
- product1 = (q31_t) (((q63_t) Ia * 0x24F34E8B) >> 30);
- /* Intermediate product is calculated by (2/sqrt(3) * Ib) */
- product2 = (q31_t) (((q63_t) Ib * 0x49E69D16) >> 30);
- /* pIbeta is calculated by adding the intermediate products */
- *pIbeta = __QADD(product1, product2);
- }
- /**
- * @} end of clarke group
- */
- /**
- * @brief Converts the elements of the Q7 vector to Q31 vector.
- * @param[in] *pSrc input pointer
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
- */
- void arm_q7_to_q31(
- q7_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
-
- /**
- * @ingroup groupController
- */
- /**
- * @defgroup inv_clarke Vector Inverse Clarke Transform
- * Inverse Clarke transform converts the two-coordinate time invariant vector into instantaneous stator phases.
- *
- * The function operates on a single sample of data and each call to the function returns the processed output.
- * The library provides separate functions for Q31 and floating-point data types.
- * \par Algorithm
- * \image html clarkeInvFormula.gif
- * where <code>pIa</code> and <code>pIb</code> are the instantaneous stator phases and
- * <code>Ialpha</code> and <code>Ibeta</code> are the two coordinates of time invariant vector.
- * \par Fixed-Point Behavior
- * Care must be taken when using the Q31 version of the Clarke transform.
- * In particular, the overflow and saturation behavior of the accumulator used must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
- /**
- * @addtogroup inv_clarke
- * @{
- */
- /**
- * @brief Floating-point Inverse Clarke transform
- * @param[in] Ialpha input two-phase orthogonal vector axis alpha
- * @param[in] Ibeta input two-phase orthogonal vector axis beta
- * @param[out] *pIa points to output three-phase coordinate <code>a</code>
- * @param[out] *pIb points to output three-phase coordinate <code>b</code>
- * @return none.
- */
- static __INLINE void arm_inv_clarke_f32(
- float32_t Ialpha,
- float32_t Ibeta,
- float32_t * pIa,
- float32_t * pIb)
- {
- /* Calculating pIa from Ialpha by equation pIa = Ialpha */
- *pIa = Ialpha;
- /* Calculating pIb from Ialpha and Ibeta by equation pIb = -(1/2) * Ialpha + (sqrt(3)/2) * Ibeta */
- *pIb = -0.5 * Ialpha + (float32_t) 0.8660254039 *Ibeta;
- }
- /**
- * @brief Inverse Clarke transform for Q31 version
- * @param[in] Ialpha input two-phase orthogonal vector axis alpha
- * @param[in] Ibeta input two-phase orthogonal vector axis beta
- * @param[out] *pIa points to output three-phase coordinate <code>a</code>
- * @param[out] *pIb points to output three-phase coordinate <code>b</code>
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using an internal 32-bit accumulator.
- * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
- * There is saturation on the subtraction, hence there is no risk of overflow.
- */
- static __INLINE void arm_inv_clarke_q31(
- q31_t Ialpha,
- q31_t Ibeta,
- q31_t * pIa,
- q31_t * pIb)
- {
- q31_t product1, product2; /* Temporary variables used to store intermediate results */
- /* Calculating pIa from Ialpha by equation pIa = Ialpha */
- *pIa = Ialpha;
- /* Intermediate product is calculated by (1/(2*sqrt(3)) * Ia) */
- product1 = (q31_t) (((q63_t) (Ialpha) * (0x40000000)) >> 31);
- /* Intermediate product is calculated by (1/sqrt(3) * pIb) */
- product2 = (q31_t) (((q63_t) (Ibeta) * (0x6ED9EBA1)) >> 31);
- /* pIb is calculated by subtracting the products */
- *pIb = __QSUB(product2, product1);
- }
- /**
- * @} end of inv_clarke group
- */
- /**
- * @brief Converts the elements of the Q7 vector to Q15 vector.
- * @param[in] *pSrc input pointer
- * @param[out] *pDst output pointer
- * @param[in] blockSize number of samples to process
- * @return none.
- */
- void arm_q7_to_q15(
- q7_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
-
- /**
- * @ingroup groupController
- */
- /**
- * @defgroup park Vector Park Transform
- *
- * Forward Park transform converts the input two-coordinate vector to flux and torque components.
- * The Park transform can be used to realize the transformation of the <code>Ialpha</code> and the <code>Ibeta</code> currents
- * from the stationary to the moving reference frame and control the spatial relationship between
- * the stator vector current and rotor flux vector.
- * If we consider the d axis aligned with the rotor flux, the diagram below shows the
- * current vector and the relationship from the two reference frames:
- * \image html park.gif "Stator current space vector and its component in (a,b) and in the d,q rotating reference frame"
- *
- * The function operates on a single sample of data and each call to the function returns the processed output.
- * The library provides separate functions for Q31 and floating-point data types.
- * \par Algorithm
- * \image html parkFormula.gif
- * where <code>Ialpha</code> and <code>Ibeta</code> are the stator vector components,
- * <code>pId</code> and <code>pIq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
- * cosine and sine values of theta (rotor flux position).
- * \par Fixed-Point Behavior
- * Care must be taken when using the Q31 version of the Park transform.
- * In particular, the overflow and saturation behavior of the accumulator used must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
- /**
- * @addtogroup park
- * @{
- */
- /**
- * @brief Floating-point Park transform
- * @param[in] Ialpha input two-phase vector coordinate alpha
- * @param[in] Ibeta input two-phase vector coordinate beta
- * @param[out] *pId points to output rotor reference frame d
- * @param[out] *pIq points to output rotor reference frame q
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- * @return none.
- *
- * The function implements the forward Park transform.
- *
- */
- static __INLINE void arm_park_f32(
- float32_t Ialpha,
- float32_t Ibeta,
- float32_t * pId,
- float32_t * pIq,
- float32_t sinVal,
- float32_t cosVal)
- {
- /* Calculate pId using the equation, pId = Ialpha * cosVal + Ibeta * sinVal */
- *pId = Ialpha * cosVal + Ibeta * sinVal;
- /* Calculate pIq using the equation, pIq = - Ialpha * sinVal + Ibeta * cosVal */
- *pIq = -Ialpha * sinVal + Ibeta * cosVal;
- }
- /**
- * @brief Park transform for Q31 version
- * @param[in] Ialpha input two-phase vector coordinate alpha
- * @param[in] Ibeta input two-phase vector coordinate beta
- * @param[out] *pId points to output rotor reference frame d
- * @param[out] *pIq points to output rotor reference frame q
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using an internal 32-bit accumulator.
- * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
- * There is saturation on the addition and subtraction, hence there is no risk of overflow.
- */
- static __INLINE void arm_park_q31(
- q31_t Ialpha,
- q31_t Ibeta,
- q31_t * pId,
- q31_t * pIq,
- q31_t sinVal,
- q31_t cosVal)
- {
- q31_t product1, product2; /* Temporary variables used to store intermediate results */
- q31_t product3, product4; /* Temporary variables used to store intermediate results */
- /* Intermediate product is calculated by (Ialpha * cosVal) */
- product1 = (q31_t) (((q63_t) (Ialpha) * (cosVal)) >> 31);
- /* Intermediate product is calculated by (Ibeta * sinVal) */
- product2 = (q31_t) (((q63_t) (Ibeta) * (sinVal)) >> 31);
- /* Intermediate product is calculated by (Ialpha * sinVal) */
- product3 = (q31_t) (((q63_t) (Ialpha) * (sinVal)) >> 31);
- /* Intermediate product is calculated by (Ibeta * cosVal) */
- product4 = (q31_t) (((q63_t) (Ibeta) * (cosVal)) >> 31);
- /* Calculate pId by adding the two intermediate products 1 and 2 */
- *pId = __QADD(product1, product2);
- /* Calculate pIq by subtracting the two intermediate products 3 from 4 */
- *pIq = __QSUB(product4, product3);
- }
- /**
- * @} end of park group
- */
- /**
- * @brief Converts the elements of the Q7 vector to floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[out] *pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- * @return none.
- */
- void arm_q7_to_float(
- q7_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
-
- /**
- * @ingroup groupController
- */
- /**
- * @defgroup inv_park Vector Inverse Park transform
- * Inverse Park transform converts the input flux and torque components to two-coordinate vector.
- *
- * The function operates on a single sample of data and each call to the function returns the processed output.
- * The library provides separate functions for Q31 and floating-point data types.
- * \par Algorithm
- * \image html parkInvFormula.gif
- * where <code>pIalpha</code> and <code>pIbeta</code> are the stator vector components,
- * <code>Id</code> and <code>Iq</code> are rotor vector components and <code>cosVal</code> and <code>sinVal</code> are the
- * cosine and sine values of theta (rotor flux position).
- * \par Fixed-Point Behavior
- * Care must be taken when using the Q31 version of the Park transform.
- * In particular, the overflow and saturation behavior of the accumulator used must be considered.
- * Refer to the function specific documentation below for usage guidelines.
- */
- /**
- * @addtogroup inv_park
- * @{
- */
- /**
- * @brief Floating-point Inverse Park transform
- * @param[in] Id input coordinate of rotor reference frame d
- * @param[in] Iq input coordinate of rotor reference frame q
- * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- * @return none.
- */
- static __INLINE void arm_inv_park_f32(
- float32_t Id,
- float32_t Iq,
- float32_t * pIalpha,
- float32_t * pIbeta,
- float32_t sinVal,
- float32_t cosVal)
- {
- /* Calculate pIalpha using the equation, pIalpha = Id * cosVal - Iq * sinVal */
- *pIalpha = Id * cosVal - Iq * sinVal;
- /* Calculate pIbeta using the equation, pIbeta = Id * sinVal + Iq * cosVal */
- *pIbeta = Id * sinVal + Iq * cosVal;
- }
- /**
- * @brief Inverse Park transform for Q31 version
- * @param[in] Id input coordinate of rotor reference frame d
- * @param[in] Iq input coordinate of rotor reference frame q
- * @param[out] *pIalpha points to output two-phase orthogonal vector axis alpha
- * @param[out] *pIbeta points to output two-phase orthogonal vector axis beta
- * @param[in] sinVal sine value of rotation angle theta
- * @param[in] cosVal cosine value of rotation angle theta
- * @return none.
- *
- * <b>Scaling and Overflow Behavior:</b>
- * \par
- * The function is implemented using an internal 32-bit accumulator.
- * The accumulator maintains 1.31 format by truncating lower 31 bits of the intermediate multiplication in 2.62 format.
- * There is saturation on the addition, hence there is no risk of overflow.
- */
- static __INLINE void arm_inv_park_q31(
- q31_t Id,
- q31_t Iq,
- q31_t * pIalpha,
- q31_t * pIbeta,
- q31_t sinVal,
- q31_t cosVal)
- {
- q31_t product1, product2; /* Temporary variables used to store intermediate results */
- q31_t product3, product4; /* Temporary variables used to store intermediate results */
- /* Intermediate product is calculated by (Id * cosVal) */
- product1 = (q31_t) (((q63_t) (Id) * (cosVal)) >> 31);
- /* Intermediate product is calculated by (Iq * sinVal) */
- product2 = (q31_t) (((q63_t) (Iq) * (sinVal)) >> 31);
- /* Intermediate product is calculated by (Id * sinVal) */
- product3 = (q31_t) (((q63_t) (Id) * (sinVal)) >> 31);
- /* Intermediate product is calculated by (Iq * cosVal) */
- product4 = (q31_t) (((q63_t) (Iq) * (cosVal)) >> 31);
- /* Calculate pIalpha by using the two intermediate products 1 and 2 */
- *pIalpha = __QSUB(product1, product2);
- /* Calculate pIbeta by using the two intermediate products 3 and 4 */
- *pIbeta = __QADD(product4, product3);
- }
- /**
- * @} end of Inverse park group
- */
-
- /**
- * @brief Converts the elements of the Q31 vector to floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[out] *pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- * @return none.
- */
- void arm_q31_to_float(
- q31_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @ingroup groupInterpolation
- */
- /**
- * @defgroup LinearInterpolate Linear Interpolation
- *
- * Linear interpolation is a method of curve fitting using linear polynomials.
- * Linear interpolation works by effectively drawing a straight line between two neighboring samples and returning the appropriate point along that line
- *
- * \par
- * \image html LinearInterp.gif "Linear interpolation"
- *
- * \par
- * A Linear Interpolate function calculates an output value(y), for the input(x)
- * using linear interpolation of the input values x0, x1( nearest input values) and the output values y0 and y1(nearest output values)
- *
- * \par Algorithm:
- * <pre>
- * y = y0 + (x - x0) * ((y1 - y0)/(x1-x0))
- * where x0, x1 are nearest values of input x
- * y0, y1 are nearest values to output y
- * </pre>
- *
- * \par
- * This set of functions implements Linear interpolation process
- * for Q7, Q15, Q31, and floating-point data types. The functions operate on a single
- * sample of data and each call to the function returns a single processed value.
- * <code>S</code> points to an instance of the Linear Interpolate function data structure.
- * <code>x</code> is the input sample value. The functions returns the output value.
- *
- * \par
- * if x is outside of the table boundary, Linear interpolation returns first value of the table
- * if x is below input range and returns last value of table if x is above range.
- */
- /**
- * @addtogroup LinearInterpolate
- * @{
- */
- /**
- * @brief Process function for the floating-point Linear Interpolation Function.
- * @param[in,out] *S is an instance of the floating-point Linear Interpolation structure
- * @param[in] x input sample to process
- * @return y processed output sample.
- *
- */
- static __INLINE float32_t arm_linear_interp_f32(
- arm_linear_interp_instance_f32 * S,
- float32_t x)
- {
- float32_t y;
- float32_t x0, x1; /* Nearest input values */
- float32_t y0, y1; /* Nearest output values */
- float32_t xSpacing = S->xSpacing; /* spacing between input values */
- int32_t i; /* Index variable */
- float32_t *pYData = S->pYData; /* pointer to output table */
- /* Calculation of index */
- i = (x - S->x1) / xSpacing;
- if(i < 0)
- {
- /* Iniatilize output for below specified range as least output value of table */
- y = pYData[0];
- }
- else if(i >= S->nValues)
- {
- /* Iniatilize output for above specified range as last output value of table */
- y = pYData[S->nValues-1];
- }
- else
- {
- /* Calculation of nearest input values */
- x0 = S->x1 + i * xSpacing;
- x1 = S->x1 + (i +1) * xSpacing;
-
- /* Read of nearest output values */
- y0 = pYData[i];
- y1 = pYData[i + 1];
-
- /* Calculation of output */
- y = y0 + (x - x0) * ((y1 - y0)/(x1-x0));
-
- }
- /* returns output value */
- return (y);
- }
- /**
- *
- * @brief Process function for the Q31 Linear Interpolation Function.
- * @param[in] *pYData pointer to Q31 Linear Interpolation table
- * @param[in] x input sample to process
- * @param[in] nValues number of table values
- * @return y processed output sample.
- *
- * \par
- * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
- * This function can support maximum of table size 2^12.
- *
- */
- static __INLINE q31_t arm_linear_interp_q31(q31_t *pYData,
- q31_t x, uint32_t nValues)
- {
- q31_t y; /* output */
- q31_t y0, y1; /* Nearest output values */
- q31_t fract; /* fractional part */
- int32_t index; /* Index to read nearest output values */
-
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- index = ((x & 0xFFF00000) >> 20);
- if(index >= (nValues - 1))
- {
- return(pYData[nValues - 1]);
- }
- else if(index < 0)
- {
- return(pYData[0]);
- }
- else
- {
- /* 20 bits for the fractional part */
- /* shift left by 11 to keep fract in 1.31 format */
- fract = (x & 0x000FFFFF) << 11;
-
- /* Read two nearest output values from the index in 1.31(q31) format */
- y0 = pYData[index];
- y1 = pYData[index + 1u];
-
- /* Calculation of y0 * (1-fract) and y is in 2.30 format */
- y = ((q31_t) ((q63_t) y0 * (0x7FFFFFFF - fract) >> 32));
-
- /* Calculation of y0 * (1-fract) + y1 *fract and y is in 2.30 format */
- y += ((q31_t) (((q63_t) y1 * fract) >> 32));
-
- /* Convert y to 1.31 format */
- return (y << 1u);
- }
- }
- /**
- *
- * @brief Process function for the Q15 Linear Interpolation Function.
- * @param[in] *pYData pointer to Q15 Linear Interpolation table
- * @param[in] x input sample to process
- * @param[in] nValues number of table values
- * @return y processed output sample.
- *
- * \par
- * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
- * This function can support maximum of table size 2^12.
- *
- */
- static __INLINE q15_t arm_linear_interp_q15(q15_t *pYData, q31_t x, uint32_t nValues)
- {
- q63_t y; /* output */
- q15_t y0, y1; /* Nearest output values */
- q31_t fract; /* fractional part */
- int32_t index; /* Index to read nearest output values */
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- index = ((x & 0xFFF00000) >> 20u);
- if(index >= (nValues - 1))
- {
- return(pYData[nValues - 1]);
- }
- else if(index < 0)
- {
- return(pYData[0]);
- }
- else
- {
- /* 20 bits for the fractional part */
- /* fract is in 12.20 format */
- fract = (x & 0x000FFFFF);
-
- /* Read two nearest output values from the index */
- y0 = pYData[index];
- y1 = pYData[index + 1u];
-
- /* Calculation of y0 * (1-fract) and y is in 13.35 format */
- y = ((q63_t) y0 * (0xFFFFF - fract));
-
- /* Calculation of (y0 * (1-fract) + y1 * fract) and y is in 13.35 format */
- y += ((q63_t) y1 * (fract));
-
- /* convert y to 1.15 format */
- return (y >> 20);
- }
- }
- /**
- *
- * @brief Process function for the Q7 Linear Interpolation Function.
- * @param[in] *pYData pointer to Q7 Linear Interpolation table
- * @param[in] x input sample to process
- * @param[in] nValues number of table values
- * @return y processed output sample.
- *
- * \par
- * Input sample <code>x</code> is in 12.20 format which contains 12 bits for table index and 20 bits for fractional part.
- * This function can support maximum of table size 2^12.
- */
- static __INLINE q7_t arm_linear_interp_q7(q7_t *pYData, q31_t x, uint32_t nValues)
- {
- q31_t y; /* output */
- q7_t y0, y1; /* Nearest output values */
- q31_t fract; /* fractional part */
- int32_t index; /* Index to read nearest output values */
-
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- index = ((x & 0xFFF00000) >> 20u);
- if(index >= (nValues - 1))
- {
- return(pYData[nValues - 1]);
- }
- else if(index < 0)
- {
- return(pYData[0]);
- }
- else
- {
- /* 20 bits for the fractional part */
- /* fract is in 12.20 format */
- fract = (x & 0x000FFFFF);
-
- /* Read two nearest output values from the index and are in 1.7(q7) format */
- y0 = pYData[index];
- y1 = pYData[index + 1u];
-
- /* Calculation of y0 * (1-fract ) and y is in 13.27(q27) format */
- y = ((y0 * (0xFFFFF - fract)));
-
- /* Calculation of y1 * fract + y0 * (1-fract) and y is in 13.27(q27) format */
- y += (y1 * fract);
-
- /* convert y to 1.7(q7) format */
- return (y >> 20u);
- }
- }
- /**
- * @} end of LinearInterpolate group
- */
- /**
- * @brief Fast approximation to the trigonometric sine function for floating-point data.
- * @param[in] x input value in radians.
- * @return sin(x).
- */
- float32_t arm_sin_f32(
- float32_t x);
- /**
- * @brief Fast approximation to the trigonometric sine function for Q31 data.
- * @param[in] x Scaled input value in radians.
- * @return sin(x).
- */
- q31_t arm_sin_q31(
- q31_t x);
- /**
- * @brief Fast approximation to the trigonometric sine function for Q15 data.
- * @param[in] x Scaled input value in radians.
- * @return sin(x).
- */
- q15_t arm_sin_q15(
- q15_t x);
- /**
- * @brief Fast approximation to the trigonometric cosine function for floating-point data.
- * @param[in] x input value in radians.
- * @return cos(x).
- */
- float32_t arm_cos_f32(
- float32_t x);
- /**
- * @brief Fast approximation to the trigonometric cosine function for Q31 data.
- * @param[in] x Scaled input value in radians.
- * @return cos(x).
- */
- q31_t arm_cos_q31(
- q31_t x);
- /**
- * @brief Fast approximation to the trigonometric cosine function for Q15 data.
- * @param[in] x Scaled input value in radians.
- * @return cos(x).
- */
- q15_t arm_cos_q15(
- q15_t x);
- /**
- * @ingroup groupFastMath
- */
- /**
- * @defgroup SQRT Square Root
- *
- * Computes the square root of a number.
- * There are separate functions for Q15, Q31, and floating-point data types.
- * The square root function is computed using the Newton-Raphson algorithm.
- * This is an iterative algorithm of the form:
- * <pre>
- * x1 = x0 - f(x0)/f'(x0)
- * </pre>
- * where <code>x1</code> is the current estimate,
- * <code>x0</code> is the previous estimate and
- * <code>f'(x0)</code> is the derivative of <code>f()</code> evaluated at <code>x0</code>.
- * For the square root function, the algorithm reduces to:
- * <pre>
- * x0 = in/2 [initial guess]
- * x1 = 1/2 * ( x0 + in / x0) [each iteration]
- * </pre>
- */
- /**
- * @addtogroup SQRT
- * @{
- */
- /**
- * @brief Floating-point square root function.
- * @param[in] in input value.
- * @param[out] *pOut square root of input value.
- * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
- * <code>in</code> is negative value and returns zero output for negative values.
- */
- static __INLINE arm_status arm_sqrt_f32(
- float32_t in, float32_t *pOut)
- {
- if(in > 0)
- {
- // #if __FPU_USED
- #if (__FPU_USED == 1) && defined ( __CC_ARM )
- *pOut = __sqrtf(in);
- #else
- *pOut = sqrtf(in);
- #endif
- return (ARM_MATH_SUCCESS);
- }
- else
- {
- *pOut = 0.0f;
- return (ARM_MATH_ARGUMENT_ERROR);
- }
- }
- /**
- * @brief Q31 square root function.
- * @param[in] in input value. The range of the input value is [0 +1) or 0x00000000 to 0x7FFFFFFF.
- * @param[out] *pOut square root of input value.
- * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
- * <code>in</code> is negative value and returns zero output for negative values.
- */
- arm_status arm_sqrt_q31(
- q31_t in, q31_t *pOut);
- /**
- * @brief Q15 square root function.
- * @param[in] in input value. The range of the input value is [0 +1) or 0x0000 to 0x7FFF.
- * @param[out] *pOut square root of input value.
- * @return The function returns ARM_MATH_SUCCESS if input value is positive value or ARM_MATH_ARGUMENT_ERROR if
- * <code>in</code> is negative value and returns zero output for negative values.
- */
- arm_status arm_sqrt_q15(
- q15_t in, q15_t *pOut);
- /**
- * @} end of SQRT group
- */
- /**
- * @brief floating-point Circular write function.
- */
- static __INLINE void arm_circularWrite_f32(
- int32_t * circBuffer,
- int32_t L,
- uint16_t * writeOffset,
- int32_t bufferInc,
- const int32_t * src,
- int32_t srcInc,
- uint32_t blockSize)
- {
- uint32_t i = 0u;
- int32_t wOffset;
- /* Copy the value of Index pointer that points
- * to the current location where the input samples to be copied */
- wOffset = *writeOffset;
- /* Loop over the blockSize */
- i = blockSize;
- while(i > 0u)
- {
- /* copy the input sample to the circular buffer */
- circBuffer[wOffset] = *src;
- /* Update the input pointer */
- src += srcInc;
- /* Circularly update wOffset. Watch out for positive and negative value */
- wOffset += bufferInc;
- if(wOffset >= L)
- wOffset -= L;
- /* Decrement the loop counter */
- i--;
- }
- /* Update the index pointer */
- *writeOffset = wOffset;
- }
- /**
- * @brief floating-point Circular Read function.
- */
- static __INLINE void arm_circularRead_f32(
- int32_t * circBuffer,
- int32_t L,
- int32_t * readOffset,
- int32_t bufferInc,
- int32_t * dst,
- int32_t * dst_base,
- int32_t dst_length,
- int32_t dstInc,
- uint32_t blockSize)
- {
- uint32_t i = 0u;
- int32_t rOffset, dst_end;
- /* Copy the value of Index pointer that points
- * to the current location from where the input samples to be read */
- rOffset = *readOffset;
- dst_end = (int32_t) (dst_base + dst_length);
- /* Loop over the blockSize */
- i = blockSize;
- while(i > 0u)
- {
- /* copy the sample from the circular buffer to the destination buffer */
- *dst = circBuffer[rOffset];
- /* Update the input pointer */
- dst += dstInc;
- if(dst == (int32_t *) dst_end)
- {
- dst = dst_base;
- }
- /* Circularly update rOffset. Watch out for positive and negative value */
- rOffset += bufferInc;
- if(rOffset >= L)
- {
- rOffset -= L;
- }
- /* Decrement the loop counter */
- i--;
- }
- /* Update the index pointer */
- *readOffset = rOffset;
- }
- /**
- * @brief Q15 Circular write function.
- */
- static __INLINE void arm_circularWrite_q15(
- q15_t * circBuffer,
- int32_t L,
- uint16_t * writeOffset,
- int32_t bufferInc,
- const q15_t * src,
- int32_t srcInc,
- uint32_t blockSize)
- {
- uint32_t i = 0u;
- int32_t wOffset;
- /* Copy the value of Index pointer that points
- * to the current location where the input samples to be copied */
- wOffset = *writeOffset;
- /* Loop over the blockSize */
- i = blockSize;
- while(i > 0u)
- {
- /* copy the input sample to the circular buffer */
- circBuffer[wOffset] = *src;
- /* Update the input pointer */
- src += srcInc;
- /* Circularly update wOffset. Watch out for positive and negative value */
- wOffset += bufferInc;
- if(wOffset >= L)
- wOffset -= L;
- /* Decrement the loop counter */
- i--;
- }
- /* Update the index pointer */
- *writeOffset = wOffset;
- }
- /**
- * @brief Q15 Circular Read function.
- */
- static __INLINE void arm_circularRead_q15(
- q15_t * circBuffer,
- int32_t L,
- int32_t * readOffset,
- int32_t bufferInc,
- q15_t * dst,
- q15_t * dst_base,
- int32_t dst_length,
- int32_t dstInc,
- uint32_t blockSize)
- {
- uint32_t i = 0;
- int32_t rOffset, dst_end;
- /* Copy the value of Index pointer that points
- * to the current location from where the input samples to be read */
- rOffset = *readOffset;
- dst_end = (int32_t) (dst_base + dst_length);
- /* Loop over the blockSize */
- i = blockSize;
- while(i > 0u)
- {
- /* copy the sample from the circular buffer to the destination buffer */
- *dst = circBuffer[rOffset];
- /* Update the input pointer */
- dst += dstInc;
- if(dst == (q15_t *) dst_end)
- {
- dst = dst_base;
- }
- /* Circularly update wOffset. Watch out for positive and negative value */
- rOffset += bufferInc;
- if(rOffset >= L)
- {
- rOffset -= L;
- }
- /* Decrement the loop counter */
- i--;
- }
- /* Update the index pointer */
- *readOffset = rOffset;
- }
- /**
- * @brief Q7 Circular write function.
- */
- static __INLINE void arm_circularWrite_q7(
- q7_t * circBuffer,
- int32_t L,
- uint16_t * writeOffset,
- int32_t bufferInc,
- const q7_t * src,
- int32_t srcInc,
- uint32_t blockSize)
- {
- uint32_t i = 0u;
- int32_t wOffset;
- /* Copy the value of Index pointer that points
- * to the current location where the input samples to be copied */
- wOffset = *writeOffset;
- /* Loop over the blockSize */
- i = blockSize;
- while(i > 0u)
- {
- /* copy the input sample to the circular buffer */
- circBuffer[wOffset] = *src;
- /* Update the input pointer */
- src += srcInc;
- /* Circularly update wOffset. Watch out for positive and negative value */
- wOffset += bufferInc;
- if(wOffset >= L)
- wOffset -= L;
- /* Decrement the loop counter */
- i--;
- }
- /* Update the index pointer */
- *writeOffset = wOffset;
- }
- /**
- * @brief Q7 Circular Read function.
- */
- static __INLINE void arm_circularRead_q7(
- q7_t * circBuffer,
- int32_t L,
- int32_t * readOffset,
- int32_t bufferInc,
- q7_t * dst,
- q7_t * dst_base,
- int32_t dst_length,
- int32_t dstInc,
- uint32_t blockSize)
- {
- uint32_t i = 0;
- int32_t rOffset, dst_end;
- /* Copy the value of Index pointer that points
- * to the current location from where the input samples to be read */
- rOffset = *readOffset;
- dst_end = (int32_t) (dst_base + dst_length);
- /* Loop over the blockSize */
- i = blockSize;
- while(i > 0u)
- {
- /* copy the sample from the circular buffer to the destination buffer */
- *dst = circBuffer[rOffset];
- /* Update the input pointer */
- dst += dstInc;
- if(dst == (q7_t *) dst_end)
- {
- dst = dst_base;
- }
- /* Circularly update rOffset. Watch out for positive and negative value */
- rOffset += bufferInc;
- if(rOffset >= L)
- {
- rOffset -= L;
- }
- /* Decrement the loop counter */
- i--;
- }
- /* Update the index pointer */
- *readOffset = rOffset;
- }
- /**
- * @brief Sum of the squares of the elements of a Q31 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_power_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q63_t * pResult);
- /**
- * @brief Sum of the squares of the elements of a floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_power_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
- /**
- * @brief Sum of the squares of the elements of a Q15 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_power_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q63_t * pResult);
- /**
- * @brief Sum of the squares of the elements of a Q7 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_power_q7(
- q7_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
- /**
- * @brief Mean value of a Q7 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_mean_q7(
- q7_t * pSrc,
- uint32_t blockSize,
- q7_t * pResult);
- /**
- * @brief Mean value of a Q15 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_mean_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult);
- /**
- * @brief Mean value of a Q31 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_mean_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
- /**
- * @brief Mean value of a floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_mean_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
- /**
- * @brief Variance of the elements of a floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_var_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
- /**
- * @brief Variance of the elements of a Q31 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_var_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q63_t * pResult);
- /**
- * @brief Variance of the elements of a Q15 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_var_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
- /**
- * @brief Root Mean Square of the elements of a floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_rms_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
- /**
- * @brief Root Mean Square of the elements of a Q31 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_rms_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
- /**
- * @brief Root Mean Square of the elements of a Q15 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_rms_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult);
- /**
- * @brief Standard deviation of the elements of a floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_std_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult);
- /**
- * @brief Standard deviation of the elements of a Q31 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_std_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult);
- /**
- * @brief Standard deviation of the elements of a Q15 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output value.
- * @return none.
- */
- void arm_std_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult);
- /**
- * @brief Floating-point complex magnitude
- * @param[in] *pSrc points to the complex input vector
- * @param[out] *pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- * @return none.
- */
- void arm_cmplx_mag_f32(
- float32_t * pSrc,
- float32_t * pDst,
- uint32_t numSamples);
- /**
- * @brief Q31 complex magnitude
- * @param[in] *pSrc points to the complex input vector
- * @param[out] *pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- * @return none.
- */
- void arm_cmplx_mag_q31(
- q31_t * pSrc,
- q31_t * pDst,
- uint32_t numSamples);
- /**
- * @brief Q15 complex magnitude
- * @param[in] *pSrc points to the complex input vector
- * @param[out] *pDst points to the real output vector
- * @param[in] numSamples number of complex samples in the input vector
- * @return none.
- */
- void arm_cmplx_mag_q15(
- q15_t * pSrc,
- q15_t * pDst,
- uint32_t numSamples);
- /**
- * @brief Q15 complex dot product
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[in] numSamples number of complex samples in each vector
- * @param[out] *realResult real part of the result returned here
- * @param[out] *imagResult imaginary part of the result returned here
- * @return none.
- */
- void arm_cmplx_dot_prod_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- uint32_t numSamples,
- q31_t * realResult,
- q31_t * imagResult);
- /**
- * @brief Q31 complex dot product
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[in] numSamples number of complex samples in each vector
- * @param[out] *realResult real part of the result returned here
- * @param[out] *imagResult imaginary part of the result returned here
- * @return none.
- */
- void arm_cmplx_dot_prod_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- uint32_t numSamples,
- q63_t * realResult,
- q63_t * imagResult);
- /**
- * @brief Floating-point complex dot product
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[in] numSamples number of complex samples in each vector
- * @param[out] *realResult real part of the result returned here
- * @param[out] *imagResult imaginary part of the result returned here
- * @return none.
- */
- void arm_cmplx_dot_prod_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- uint32_t numSamples,
- float32_t * realResult,
- float32_t * imagResult);
- /**
- * @brief Q15 complex-by-real multiplication
- * @param[in] *pSrcCmplx points to the complex input vector
- * @param[in] *pSrcReal points to the real input vector
- * @param[out] *pCmplxDst points to the complex output vector
- * @param[in] numSamples number of samples in each vector
- * @return none.
- */
- void arm_cmplx_mult_real_q15(
- q15_t * pSrcCmplx,
- q15_t * pSrcReal,
- q15_t * pCmplxDst,
- uint32_t numSamples);
- /**
- * @brief Q31 complex-by-real multiplication
- * @param[in] *pSrcCmplx points to the complex input vector
- * @param[in] *pSrcReal points to the real input vector
- * @param[out] *pCmplxDst points to the complex output vector
- * @param[in] numSamples number of samples in each vector
- * @return none.
- */
- void arm_cmplx_mult_real_q31(
- q31_t * pSrcCmplx,
- q31_t * pSrcReal,
- q31_t * pCmplxDst,
- uint32_t numSamples);
- /**
- * @brief Floating-point complex-by-real multiplication
- * @param[in] *pSrcCmplx points to the complex input vector
- * @param[in] *pSrcReal points to the real input vector
- * @param[out] *pCmplxDst points to the complex output vector
- * @param[in] numSamples number of samples in each vector
- * @return none.
- */
- void arm_cmplx_mult_real_f32(
- float32_t * pSrcCmplx,
- float32_t * pSrcReal,
- float32_t * pCmplxDst,
- uint32_t numSamples);
- /**
- * @brief Minimum value of a Q7 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *result is output pointer
- * @param[in] index is the array index of the minimum value in the input buffer.
- * @return none.
- */
- void arm_min_q7(
- q7_t * pSrc,
- uint32_t blockSize,
- q7_t * result,
- uint32_t * index);
- /**
- * @brief Minimum value of a Q15 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output pointer
- * @param[in] *pIndex is the array index of the minimum value in the input buffer.
- * @return none.
- */
- void arm_min_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult,
- uint32_t * pIndex);
- /**
- * @brief Minimum value of a Q31 vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output pointer
- * @param[out] *pIndex is the array index of the minimum value in the input buffer.
- * @return none.
- */
- void arm_min_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult,
- uint32_t * pIndex);
- /**
- * @brief Minimum value of a floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[in] blockSize is the number of samples to process
- * @param[out] *pResult is output pointer
- * @param[out] *pIndex is the array index of the minimum value in the input buffer.
- * @return none.
- */
- void arm_min_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult,
- uint32_t * pIndex);
- /**
- * @brief Maximum value of a Q7 vector.
- * @param[in] *pSrc points to the input buffer
- * @param[in] blockSize length of the input vector
- * @param[out] *pResult maximum value returned here
- * @param[out] *pIndex index of maximum value returned here
- * @return none.
- */
- void arm_max_q7(
- q7_t * pSrc,
- uint32_t blockSize,
- q7_t * pResult,
- uint32_t * pIndex);
- /**
- * @brief Maximum value of a Q15 vector.
- * @param[in] *pSrc points to the input buffer
- * @param[in] blockSize length of the input vector
- * @param[out] *pResult maximum value returned here
- * @param[out] *pIndex index of maximum value returned here
- * @return none.
- */
- void arm_max_q15(
- q15_t * pSrc,
- uint32_t blockSize,
- q15_t * pResult,
- uint32_t * pIndex);
- /**
- * @brief Maximum value of a Q31 vector.
- * @param[in] *pSrc points to the input buffer
- * @param[in] blockSize length of the input vector
- * @param[out] *pResult maximum value returned here
- * @param[out] *pIndex index of maximum value returned here
- * @return none.
- */
- void arm_max_q31(
- q31_t * pSrc,
- uint32_t blockSize,
- q31_t * pResult,
- uint32_t * pIndex);
- /**
- * @brief Maximum value of a floating-point vector.
- * @param[in] *pSrc points to the input buffer
- * @param[in] blockSize length of the input vector
- * @param[out] *pResult maximum value returned here
- * @param[out] *pIndex index of maximum value returned here
- * @return none.
- */
- void arm_max_f32(
- float32_t * pSrc,
- uint32_t blockSize,
- float32_t * pResult,
- uint32_t * pIndex);
- /**
- * @brief Q15 complex-by-complex multiplication
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- * @return none.
- */
- void arm_cmplx_mult_cmplx_q15(
- q15_t * pSrcA,
- q15_t * pSrcB,
- q15_t * pDst,
- uint32_t numSamples);
- /**
- * @brief Q31 complex-by-complex multiplication
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- * @return none.
- */
- void arm_cmplx_mult_cmplx_q31(
- q31_t * pSrcA,
- q31_t * pSrcB,
- q31_t * pDst,
- uint32_t numSamples);
- /**
- * @brief Floating-point complex-by-complex multiplication
- * @param[in] *pSrcA points to the first input vector
- * @param[in] *pSrcB points to the second input vector
- * @param[out] *pDst points to the output vector
- * @param[in] numSamples number of complex samples in each vector
- * @return none.
- */
- void arm_cmplx_mult_cmplx_f32(
- float32_t * pSrcA,
- float32_t * pSrcB,
- float32_t * pDst,
- uint32_t numSamples);
- /**
- * @brief Converts the elements of the floating-point vector to Q31 vector.
- * @param[in] *pSrc points to the floating-point input vector
- * @param[out] *pDst points to the Q31 output vector
- * @param[in] blockSize length of the input vector
- * @return none.
- */
- void arm_float_to_q31(
- float32_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Converts the elements of the floating-point vector to Q15 vector.
- * @param[in] *pSrc points to the floating-point input vector
- * @param[out] *pDst points to the Q15 output vector
- * @param[in] blockSize length of the input vector
- * @return none
- */
- void arm_float_to_q15(
- float32_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Converts the elements of the floating-point vector to Q7 vector.
- * @param[in] *pSrc points to the floating-point input vector
- * @param[out] *pDst points to the Q7 output vector
- * @param[in] blockSize length of the input vector
- * @return none
- */
- void arm_float_to_q7(
- float32_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Converts the elements of the Q31 vector to Q15 vector.
- * @param[in] *pSrc is input pointer
- * @param[out] *pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- * @return none.
- */
- void arm_q31_to_q15(
- q31_t * pSrc,
- q15_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Converts the elements of the Q31 vector to Q7 vector.
- * @param[in] *pSrc is input pointer
- * @param[out] *pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- * @return none.
- */
- void arm_q31_to_q7(
- q31_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Converts the elements of the Q15 vector to floating-point vector.
- * @param[in] *pSrc is input pointer
- * @param[out] *pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- * @return none.
- */
- void arm_q15_to_float(
- q15_t * pSrc,
- float32_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Converts the elements of the Q15 vector to Q31 vector.
- * @param[in] *pSrc is input pointer
- * @param[out] *pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- * @return none.
- */
- void arm_q15_to_q31(
- q15_t * pSrc,
- q31_t * pDst,
- uint32_t blockSize);
- /**
- * @brief Converts the elements of the Q15 vector to Q7 vector.
- * @param[in] *pSrc is input pointer
- * @param[out] *pDst is output pointer
- * @param[in] blockSize is the number of samples to process
- * @return none.
- */
- void arm_q15_to_q7(
- q15_t * pSrc,
- q7_t * pDst,
- uint32_t blockSize);
- /**
- * @ingroup groupInterpolation
- */
- /**
- * @defgroup BilinearInterpolate Bilinear Interpolation
- *
- * Bilinear interpolation is an extension of linear interpolation applied to a two dimensional grid.
- * The underlying function <code>f(x, y)</code> is sampled on a regular grid and the interpolation process
- * determines values between the grid points.
- * Bilinear interpolation is equivalent to two step linear interpolation, first in the x-dimension and then in the y-dimension.
- * Bilinear interpolation is often used in image processing to rescale images.
- * The CMSIS DSP library provides bilinear interpolation functions for Q7, Q15, Q31, and floating-point data types.
- *
- * <b>Algorithm</b>
- * \par
- * The instance structure used by the bilinear interpolation functions describes a two dimensional data table.
- * For floating-point, the instance structure is defined as:
- * <pre>
- * typedef struct
- * {
- * uint16_t numRows;
- * uint16_t numCols;
- * float32_t *pData;
- * } arm_bilinear_interp_instance_f32;
- * </pre>
- *
- * \par
- * where <code>numRows</code> specifies the number of rows in the table;
- * <code>numCols</code> specifies the number of columns in the table;
- * and <code>pData</code> points to an array of size <code>numRows*numCols</code> values.
- * The data table <code>pTable</code> is organized in row order and the supplied data values fall on integer indexes.
- * That is, table element (x,y) is located at <code>pTable[x + y*numCols]</code> where x and y are integers.
- *
- * \par
- * Let <code>(x, y)</code> specify the desired interpolation point. Then define:
- * <pre>
- * XF = floor(x)
- * YF = floor(y)
- * </pre>
- * \par
- * The interpolated output point is computed as:
- * <pre>
- * f(x, y) = f(XF, YF) * (1-(x-XF)) * (1-(y-YF))
- * + f(XF+1, YF) * (x-XF)*(1-(y-YF))
- * + f(XF, YF+1) * (1-(x-XF))*(y-YF)
- * + f(XF+1, YF+1) * (x-XF)*(y-YF)
- * </pre>
- * Note that the coordinates (x, y) contain integer and fractional components.
- * The integer components specify which portion of the table to use while the
- * fractional components control the interpolation processor.
- *
- * \par
- * if (x,y) are outside of the table boundary, Bilinear interpolation returns zero output.
- */
- /**
- * @addtogroup BilinearInterpolate
- * @{
- */
- /**
- *
- * @brief Floating-point bilinear interpolation.
- * @param[in,out] *S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate.
- * @param[in] Y interpolation coordinate.
- * @return out interpolated value.
- */
-
- static __INLINE float32_t arm_bilinear_interp_f32(
- const arm_bilinear_interp_instance_f32 * S,
- float32_t X,
- float32_t Y)
- {
- float32_t out;
- float32_t f00, f01, f10, f11;
- float32_t *pData = S->pData;
- int32_t xIndex, yIndex, index;
- float32_t xdiff, ydiff;
- float32_t b1, b2, b3, b4;
- xIndex = (int32_t) X;
- yIndex = (int32_t) Y;
- /* Care taken for table outside boundary */
- /* Returns zero output when values are outside table boundary */
- if(xIndex < 0 || xIndex > (S->numRows-1) || yIndex < 0 || yIndex > ( S->numCols-1))
- {
- return(0);
- }
-
- /* Calculation of index for two nearest points in X-direction */
- index = (xIndex - 1) + (yIndex-1) * S->numCols ;
- /* Read two nearest points in X-direction */
- f00 = pData[index];
- f01 = pData[index + 1];
- /* Calculation of index for two nearest points in Y-direction */
- index = (xIndex-1) + (yIndex) * S->numCols;
- /* Read two nearest points in Y-direction */
- f10 = pData[index];
- f11 = pData[index + 1];
- /* Calculation of intermediate values */
- b1 = f00;
- b2 = f01 - f00;
- b3 = f10 - f00;
- b4 = f00 - f01 - f10 + f11;
- /* Calculation of fractional part in X */
- xdiff = X - xIndex;
- /* Calculation of fractional part in Y */
- ydiff = Y - yIndex;
- /* Calculation of bi-linear interpolated output */
- out = b1 + b2 * xdiff + b3 * ydiff + b4 * xdiff * ydiff;
- /* return to application */
- return (out);
- }
- /**
- *
- * @brief Q31 bilinear interpolation.
- * @param[in,out] *S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate in 12.20 format.
- * @param[in] Y interpolation coordinate in 12.20 format.
- * @return out interpolated value.
- */
- static __INLINE q31_t arm_bilinear_interp_q31(
- arm_bilinear_interp_instance_q31 * S,
- q31_t X,
- q31_t Y)
- {
- q31_t out; /* Temporary output */
- q31_t acc = 0; /* output */
- q31_t xfract, yfract; /* X, Y fractional parts */
- q31_t x1, x2, y1, y2; /* Nearest output values */
- int32_t rI, cI; /* Row and column indices */
- q31_t *pYData = S->pData; /* pointer to output table values */
- uint32_t nCols = S->numCols; /* num of rows */
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- rI = ((X & 0xFFF00000) >> 20u);
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- cI = ((Y & 0xFFF00000) >> 20u);
- /* Care taken for table outside boundary */
- /* Returns zero output when values are outside table boundary */
- if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1))
- {
- return(0);
- }
- /* 20 bits for the fractional part */
- /* shift left xfract by 11 to keep 1.31 format */
- xfract = (X & 0x000FFFFF) << 11u;
- /* Read two nearest output values from the index */
- x1 = pYData[(rI) + nCols * (cI)];
- x2 = pYData[(rI) + nCols * (cI) + 1u];
- /* 20 bits for the fractional part */
- /* shift left yfract by 11 to keep 1.31 format */
- yfract = (Y & 0x000FFFFF) << 11u;
- /* Read two nearest output values from the index */
- y1 = pYData[(rI) + nCols * (cI + 1)];
- y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
- /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 3.29(q29) format */
- out = ((q31_t) (((q63_t) x1 * (0x7FFFFFFF - xfract)) >> 32));
- acc = ((q31_t) (((q63_t) out * (0x7FFFFFFF - yfract)) >> 32));
- /* x2 * (xfract) * (1-yfract) in 3.29(q29) and adding to acc */
- out = ((q31_t) ((q63_t) x2 * (0x7FFFFFFF - yfract) >> 32));
- acc += ((q31_t) ((q63_t) out * (xfract) >> 32));
- /* y1 * (1 - xfract) * (yfract) in 3.29(q29) and adding to acc */
- out = ((q31_t) ((q63_t) y1 * (0x7FFFFFFF - xfract) >> 32));
- acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
- /* y2 * (xfract) * (yfract) in 3.29(q29) and adding to acc */
- out = ((q31_t) ((q63_t) y2 * (xfract) >> 32));
- acc += ((q31_t) ((q63_t) out * (yfract) >> 32));
- /* Convert acc to 1.31(q31) format */
- return (acc << 2u);
- }
- /**
- * @brief Q15 bilinear interpolation.
- * @param[in,out] *S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate in 12.20 format.
- * @param[in] Y interpolation coordinate in 12.20 format.
- * @return out interpolated value.
- */
- static __INLINE q15_t arm_bilinear_interp_q15(
- arm_bilinear_interp_instance_q15 * S,
- q31_t X,
- q31_t Y)
- {
- q63_t acc = 0; /* output */
- q31_t out; /* Temporary output */
- q15_t x1, x2, y1, y2; /* Nearest output values */
- q31_t xfract, yfract; /* X, Y fractional parts */
- int32_t rI, cI; /* Row and column indices */
- q15_t *pYData = S->pData; /* pointer to output table values */
- uint32_t nCols = S->numCols; /* num of rows */
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- rI = ((X & 0xFFF00000) >> 20);
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- cI = ((Y & 0xFFF00000) >> 20);
- /* Care taken for table outside boundary */
- /* Returns zero output when values are outside table boundary */
- if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1))
- {
- return(0);
- }
- /* 20 bits for the fractional part */
- /* xfract should be in 12.20 format */
- xfract = (X & 0x000FFFFF);
- /* Read two nearest output values from the index */
- x1 = pYData[(rI) + nCols * (cI)];
- x2 = pYData[(rI) + nCols * (cI) + 1u];
- /* 20 bits for the fractional part */
- /* yfract should be in 12.20 format */
- yfract = (Y & 0x000FFFFF);
- /* Read two nearest output values from the index */
- y1 = pYData[(rI) + nCols * (cI + 1)];
- y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
- /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 13.51 format */
- /* x1 is in 1.15(q15), xfract in 12.20 format and out is in 13.35 format */
- /* convert 13.35 to 13.31 by right shifting and out is in 1.31 */
- out = (q31_t) (((q63_t) x1 * (0xFFFFF - xfract)) >> 4u);
- acc = ((q63_t) out * (0xFFFFF - yfract));
- /* x2 * (xfract) * (1-yfract) in 1.51 and adding to acc */
- out = (q31_t) (((q63_t) x2 * (0xFFFFF - yfract)) >> 4u);
- acc += ((q63_t) out * (xfract));
- /* y1 * (1 - xfract) * (yfract) in 1.51 and adding to acc */
- out = (q31_t) (((q63_t) y1 * (0xFFFFF - xfract)) >> 4u);
- acc += ((q63_t) out * (yfract));
- /* y2 * (xfract) * (yfract) in 1.51 and adding to acc */
- out = (q31_t) (((q63_t) y2 * (xfract)) >> 4u);
- acc += ((q63_t) out * (yfract));
- /* acc is in 13.51 format and down shift acc by 36 times */
- /* Convert out to 1.15 format */
- return (acc >> 36);
- }
- /**
- * @brief Q7 bilinear interpolation.
- * @param[in,out] *S points to an instance of the interpolation structure.
- * @param[in] X interpolation coordinate in 12.20 format.
- * @param[in] Y interpolation coordinate in 12.20 format.
- * @return out interpolated value.
- */
- static __INLINE q7_t arm_bilinear_interp_q7(
- arm_bilinear_interp_instance_q7 * S,
- q31_t X,
- q31_t Y)
- {
- q63_t acc = 0; /* output */
- q31_t out; /* Temporary output */
- q31_t xfract, yfract; /* X, Y fractional parts */
- q7_t x1, x2, y1, y2; /* Nearest output values */
- int32_t rI, cI; /* Row and column indices */
- q7_t *pYData = S->pData; /* pointer to output table values */
- uint32_t nCols = S->numCols; /* num of rows */
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- rI = ((X & 0xFFF00000) >> 20);
- /* Input is in 12.20 format */
- /* 12 bits for the table index */
- /* Index value calculation */
- cI = ((Y & 0xFFF00000) >> 20);
- /* Care taken for table outside boundary */
- /* Returns zero output when values are outside table boundary */
- if(rI < 0 || rI > (S->numRows-1) || cI < 0 || cI > ( S->numCols-1))
- {
- return(0);
- }
- /* 20 bits for the fractional part */
- /* xfract should be in 12.20 format */
- xfract = (X & 0x000FFFFF);
- /* Read two nearest output values from the index */
- x1 = pYData[(rI) + nCols * (cI)];
- x2 = pYData[(rI) + nCols * (cI) + 1u];
- /* 20 bits for the fractional part */
- /* yfract should be in 12.20 format */
- yfract = (Y & 0x000FFFFF);
- /* Read two nearest output values from the index */
- y1 = pYData[(rI) + nCols * (cI + 1)];
- y2 = pYData[(rI) + nCols * (cI + 1) + 1u];
- /* Calculation of x1 * (1-xfract ) * (1-yfract) and acc is in 16.47 format */
- out = ((x1 * (0xFFFFF - xfract)));
- acc = (((q63_t) out * (0xFFFFF - yfract)));
- /* x2 * (xfract) * (1-yfract) in 2.22 and adding to acc */
- out = ((x2 * (0xFFFFF - yfract)));
- acc += (((q63_t) out * (xfract)));
- /* y1 * (1 - xfract) * (yfract) in 2.22 and adding to acc */
- out = ((y1 * (0xFFFFF - xfract)));
- acc += (((q63_t) out * (yfract)));
- /* y2 * (xfract) * (yfract) in 2.22 and adding to acc */
- out = ((y2 * (yfract)));
- acc += (((q63_t) out * (xfract)));
- /* acc in 16.47 format and down shift by 40 to convert to 1.7 format */
- return (acc >> 40);
- }
- /**
- * @} end of BilinearInterpolate group
- */
- #ifdef __cplusplus
- }
- #endif
- #endif /* _ARM_MATH_H */
- /**
- *
- * End of file.
- */
|